Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015
Coastal wetlands are major global carbon sinks; however, quantification of carbon flux can be difficult in these heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013 and 2014 growing seasons. Two sediment cores were collected in 2015 from the ... |
Info |
Static chamber fluxes of carbon dioxide and methane from Phragmites wetlands and supporting data collected across a salinity gradient on Cape Cod, Massachusetts
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ... |
Info |
Static chamber fluxes of carbon dioxide and methane from coastal wetlands on Upper Cape Cod, Massachusetts and supporting environmental data, 2021
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA (version 4.0, June 2022)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA (version 3.0, March 2021)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA (version 2.0, August 2019)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Discrete Carbonate System Parameter Measurements in Middle Tampa Bay, Florida and the Eastern Gulf of Mexico, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida and eastern Gulf of Mexico. Discrete seawater samples were collected periodically (every few weeks to months) at repeat monitoring locations. Water samples were analyzed by the USGS Carbon Analytical Laboratory in St. ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Eastern Gulf of Mexico near Tampa Bay, Florida, USA (Version 2.0)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification in the Gulf of Mexico near the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 3 (OCSv3) deployed on the University of South Florida (USF), Coastal Ocean Monitoring and ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Eastern Gulf of Mexico near Tampa Bay, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification in the Gulf of Mexico near the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 3 (OCSv3) deployed on the University of South Florida (USF), Coastal Ocean Monitoring and ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements from Crocker Reef, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification at Crocker Reef located along the Florida Keys Reef Tract, in Southeast Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 1 (OCSv1) deployed on the seafloor at Crocker Reef. The OCSv1 consists of five sensors ... |
Info |
Grain size, bulk density, and organic carbon of sediment cores from San Pablo Bay and Grizzly Bay, California, 2019
Bed sediment samples were collected in San Pablo Bay and Grizzly Bays on eight days from June through November 2019, to analyze for sediment properties including bulk density, particle size distribution, and percent organic carbon. Sediment samples were collected from a small vessel near pre-established USGS instrument moorings using a Gomex box corer that was subsampled with three push cores (37 mm in diameter) per Gomex core. Six subsamples were collected from the top 5 centimeters (cm) of each push ... |
Info |
Grain size, bulk density, and organic carbon of sediment cores from San Pablo Bay and Grizzly Bay, California, 2020
Bed sediment samples were collected in San Pablo Bay and Grizzly Bays on eight days from January through September 2020, to analyze for sediment properties including bulk density, particle size distribution, and percent organic carbon. Sediment samples were collected from a small vessel near pre-established USGS instrument moorings using a Gomex box corer that was subsampled with three push cores (37 mm in diameter) per Gomex core. Six subsamples were collected from the top 5 centimeters (cm) of each push ... |
Info |
Grain size, bulk density, and organic carbon of sediment cores from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018
Bed sediment samples were collected in Lindsey Slough in April 2017, and Middle River and the Mokelumne River in March 2018, to analyze for sediment properties, including bulk density, particle size distribution, and percent organic carbon. Sediment samples were collected within the vegetation with push corers deployed from a small vessel, and in the unvegetated channel with a Gomex box corer, which was subsampled with three push cores per Gomex core. Data are provided in a comma-delimited values ... |
Info |
Grain size, bulk density, and carbon content of sediment collected from Whale's Tail South marsh and adjacent bay floor, South San Francisco Bay, California, 2021-2022
Sediment samples were collected on and adjacent to the Whale's Tail South marsh. Short push-cores of bed sediment were collected in South San Francisco Bay adjacent to Whale's Tail South marsh on five days from June through August 2021 and 3 days from November 2021 to January 2022. Additional samples were taken from sediment deposited on ceramic tiles attached to the marsh surface and from rip-up clasts deposited on the marsh edge. Samples were analyzed for sediment properties including bulk density, ... |
Info |
Distribution of Total Organic Carbon (TOC) in Long Island Sound
This GIS layer contains a polygon overlay showing the distribution of Total Organic Carbon (TOC) in the sediments of Long Island Sound. |
Info |
Bulk organic matter and carbonate content of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Bulk organics and carbonate content of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022)
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ... |
Info |
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes on the South Shore of Cape Cod, Massachusetts, From 2013 Through 2014
The accretion history of fringing microtidal salt marshes located on the south shore of Cape Cod, Massachusetts, was reconstructed from sediment cores collected in low and high marsh vegetation zones. The location of these marshes within protected embayments and the absence of large rivers on Cape Cod result in minimal sediment supply and a dominance of organic matter contribution to sediment peat. Age models based on 210-lead and 137-cesium were constructed to evaluate how vertical accretion and carbon ... |
Info |
Point Shapefiles of Locations and Results of Ocean Bottom Ferromanganese Crusts Chemical Analyses Published in Appendix C of USGS Open-File Report 89-020
The chemical compositions and natural distribution of ferromanganese crusts have been a topic of interest to scientific research, as well as to industrial and military applications. These crusts form largely on hard substrates in marine environments largely free from heavy amounts of sedimentation. They are distinct from ferromanganese nodules that form in abyssal geographic locations, by their chemical composition, mineralogy, and source of metals. A database containing analytical data pertaining to ... |
Info |
Properties of sediment collected from two marshes and adjacent shallows in Northern San Francisco Bay, California, 2022-2023
Bed sediment samples were collected from the intertidal, and subtidal shallows of San Pablo Bay National Wildlife Refuge and Corte Madera Bay near stations where instrumented platforms that were collecting hydrographic time-series were deployed. Sediment sediments were collected with push cores, either manually or by subsampling a Gomex box corer. Cores, which ranged in length from 5 to 18 centimeters (cm), were sectioned by depth. The top two sections from each core were 0.5 cm thick, the following ... |
Info |
Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16
Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered, natural downstream sites provide a comparison against the historically restricted upstream sites. The sampled cores ... |
Info |
Collection, analysis, and age-dating of sediment cores from mangrove and salt marsh ecosystems in Tampa Bay, Florida, 2015
Coastal wetlands in Tampa Bay, Florida, are important ecosystems that deliver a variety of ecosystem services. Key to ecosystem functioning is wetland response to sea-level rise through accumulation of mineral and organic sediment. The organic sediment within coastal wetlands is composed of carbon sequestered over the time scale of the wetland’s existence. This study was conducted to provide information on soil accretion and carbon storage rates across a variety of coastal ecosystems that was utilized in ... |
Info |
Collection, analysis, and age-dating of sediment cores from mangrove wetlands in San Juan Bay Estuary, Puerto Rico, 2016
The San Juan Bay Estuary, Puerto Rico, contains mangrove forests that store significant amounts of organic carbon in soils and biomass. There is a strong urbanization gradient across the estuary, from the highly urbanized and clogged Caño Martin Peña in the western part of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part with limited urbanization. We collected sediment cores to determine carbon burial rates and vertical ... |
Info |
Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015–17
The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which plans to ... |
Info |