Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)
Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ... |
Info |
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)
Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ... |
Info |
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)
Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ... |
Info |
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)
Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ... |
Info |
Post-Hurricane Florence Aerial Imagery: Cape Fear to Duck, North Carolina, October 6-8, 2018
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic change, and for understanding coastal vulnerability and ... |
Info |
Time Series of Structure-from-Motion Products - Digital Elevation Models: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of DEMs ... |
Info |
Time Series of Structure-from-Motion Products - Multispectral Orthomosaics: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ... |
Info |
Time Series of Structure-from-Motion Products - Point Clouds: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ... |
Info |
Time Series of Structure-from-Motion Products - RGB Orthomosaics: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of red ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-08-30 and 2019-09-02, Pre-Hurricane Dorian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-10-11
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-11-26
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-02-08 to 2020-02-09
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-05-08 to 2020-05-09
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.8.5) from the point cloud and includes points from both classes. The DEM covers a ... |
Info |
Digital Elevation Model (DEM) of Summerland Ledge, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a ... |
Info |
Orthoimagery of Big Pine Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-averaging methods and saved as a tiled Geographic Tagged Image ... |
Info |
Orthoimagery of Summerland Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-averaging methods and saved as a Geographic Tagged Image ... |
Info |
Orthomosaic of Big Pine Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as a tiled Geographic Tagged ... |
Info |
Orthomosaic of Summerland Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-mosaicing methods and saved as a Geographic Tagged Image ... |
Info |
Point cloud data of Big Pine Ledge, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) – and its compressed form, LAZ – is an open format ... |
Info |
Point cloud data of Summerland Ledge, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format ... |
Info |
High Resolution Digital Elevation Model (DEM) of Looe Key, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ... |
Info |
Orthoimagery of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-averaging methods and saved as Geographic Tagged Image File Format ... |
Info |
Orthomosaic of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as Geographic Tagged Image File Format ... |
Info |
Point cloud data of Looe Key, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format developed for ... |
Info |
Quicklook Digital Elevation Model (DEM) of Looe Key, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ... |
Info |
Quicklook Orthoimage of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. This "quicklook" version of the dataset was created using image-averaging methods and saved as ... |
Info |
STCR2014_EAARLB_v09g12B_metadata: EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014
ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ... |
Info |
STCR2014_EAARLB_v09g12B_mosaic_metadata: EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014
A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced ... |
Info |
Lidar-Derived Digital Elevation Model (DEM) Mosaic for EAARL-B Submerged Topography-Saint Thomas, U.S. Virgin Islands, 2014
A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation ... |
Info |
Lidar-Derived Point Cloud for EAARL-B Submerged Topography–—Saint Thomas, U.S. Virgin Islands, 2014
ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ... |
Info |
Time Series of Aerial Imagery from Small Unmanned Aircraft Systems and Associated Ground Control Points: Madeira Beach, Florida, July 2017 to June 2018 (Aerial Imagery)
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCPs) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data consisting of aerial ... |
Info |
Time Series of Aerial Imagery from Small Unmanned Aircraft Systems and Associated Ground Control Points: Madeira Beach, Florida, July 2017 to June 2018 (Surveyed GCPs)
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCPs) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data consisting of aerial ... |
Info |
Time Series of Structure-from-Motion Products - Digital Elevation Models: Madeira Beach, Florida, July 2017 to June 2018
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of DEMs ... |
Info |
Time Series of Structure-from-Motion Products - Orthomosaics: Madeira Beach, Florida, July 2017 to June 2018
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ... |
Info |
Time Series of Structure-from-Motion Products - Point Clouds: Madeira Beach, Florida, July 2017 to June 2018
Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ... |
Info |
Bathymetric digital elevation model (DEM) of Eastern Dry Rocks coral reef, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was derived in Metashape (ver. 1.6.5) from the point cloud, but it excludes the 'low noise' class. The DEM covers a rectangular area of seafloor ... |
Info |
GNSS locations of seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021
This text file (SQUID5_EDR_2021_Image_Locations.txt) provides the GNSS antenna location for underwater images collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image's EXIF header due to ... |
Info |
Orthoimagery of Eastern Dry Rocks coral reef, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (0.12 square kilometers) in size, and it was created using image-mosaicking methods and saved as a tiled, 5-mm resolution raster. |
Info |
Overlapping seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021
Underwater images totaling 138,733 in number were collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS ... |
Info |
Point cloud data of Eastern Dry Rocks coral reef, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'low noise') derived from the confidence values. LAS (and its compressed form, LAZ) is an open format ... |
Info |
Digital elevation model (DEM) of Looe Key, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 720x100 meters (0.072 ... |
Info |
GNSS locations of seabed images collected at Looe Key, Florida, 2021
The text file "SQUID5_LKR_2021_Image_Locations.txt" provides the GNSS antenna location for underwater images collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image EXIF headers due to decimal place limitations of the EXIF ... |
Info |
Orthoimagery of Looe Key, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 720x100 meters (0.072 square kilometers) in size. It was created using image-mosaicking methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
Overlapping seabed images collected at Looe Key, Florida, 2021
A total of 94,567 underwater images were collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images in the Tagged Image File Format format to maintain the highest resolution and bit depth. Each image includes Exchangeable Image File (EXIF) metadata, containing Global ... |
Info |
Point cloud data of Looe Key, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 650x120 meters (0 ... |
Info |
Orthoimagery of Big Pine Ledge, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 650x120 meters (0.078 square kilometers) in size. It was created using image-averaging methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
Point cloud data of Big Pine Ledge, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
GNSS locations of lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021
This text file (2021-607-FA_Image_Locations.txt) provides the GNSS antenna location for underwater images collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image’s EXIF header due to decimal place limitations of the EXIF format. |
Info |
Overlapping lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021
Underwater images were collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The images are organized in zipped files grouped by survey line. The SQUID-5 system records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS date, time, and latitude and longitude of the GNSS antenna mounted on the towed surface vehicle, copyright, keywords, and ... |
Info |
Bathymetric digital elevation model (DEM) of Lake Tahoe near Dollar Point
Underwater images collected near Dollar Point in Lake Tahoe, California, were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified 3D point cloud. The DEM was derived in Metashape (ver. 1.6.4) from the point cloud, but it excludes the 'high noise' class. The DEM data were output as a geoTIFF raster at 25-mm resolution. |
Info |
Orthoimagery of Lake Tahoe near Dollar Point
Lakebed orthoimagery was developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimages were developed using both image-mosaic and image-averaging methods, which were then output as 5-mm resolution rasters. In general, the "Mosaic" product is somewhat sharper in resolution but will include some distinct seam lines and noticeable differences in image quality across the image. The "Average" ... |
Info |
Point cloud data of Lake Tahoe near Dollar Point
Three-dimensional point clouds (LAZ format) were developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'high noise') derived from the confidence values. LAZ is an open format developed for the efficient use of point cloud lidar data. A description of the LAZ ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-10-11, one month Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-05-08 to 2020-05-09
RGB-averaged orthoimages were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-10-11, one-month post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
ANGD2014_BE_z20_n88g12A_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014
A digital elevation model (DEM) mosaic was produced for Anegada, British Virgin Islands, from remotely sensed, geographically referenced elevation measurements collected by Watershed Sciences, Inc. (WSI)/Quantum Spatial using an Optech Orion M300 (1064-nm wavelength) lidar sensor on January 21, 2014. |
Info |
ANGD2014_EAARLB_z20_v09g12A_metadata: Lidar-Derived Seamless (Bare Earth and Submerged) Point Cloud for Coastal Topography—Anegada, British Virgin Islands, 2014
ASCII XYZ point cloud data for a portion of the environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ... |
Info |
ANGD2014_EAARLB_z20_v09g12A_mosaic_metadata: Lidar-Derived Seamless (Bare Earth and Submerged) Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014
A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ... |
Info |
Ground Control Point Data from the Outer Banks, North Carolina, post-Hurricane Dorian, September 2019
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project surveyed 34 features visible from the air to be used as ground control points (GCP) on the Outer Banks, North Carolina, on September 24 and 25, 2019, after the passing of Hurricane Dorian (U.S. landfall on September 6, 2019). Global Positioning System (GPS) data were collected in support of aerial imagery surveys documenting the storm impacts and subsequent recovery along the coast and will be used as control and check points in ... |
Info |
Post-Hurricane Florence Digital Elevation Models of coastal North Carolina
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data ... |
Info |
Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data ... |
Info |
Structure-from-Motion bathymetric maps from the Florida Keys, 2019
Structure-from-Motion (SfM) bathymetric maps were created using seafloor images collected using the new 5-camera system SfM Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected during July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys during 3 days. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and ... |
Info |
Structure-from-Motion orthophotos from the Florida Keys, 2019
Georeferenced orthophotos were created from structure-from-motion (SfM) data using seafloor images collected using the new 5-camera system SfM Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys during 3 days. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including ... |
Info |
Structure-from-Motion point clouds from the Florida Keys, 2019
Structure-from-Motion (SfM) point clouds were created from seafloor images collected using the new 5-camera system SfM Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys during 3 days. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and senile reefs, ... |
Info |
Structure-from-Motion underwater photos from the Florida Keys, 2019
Underwater photos were collected using a new 5-camera system, the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and senile reefs, rubble, and sand. The images are ... |
Info |
2022-334-FA_BocaChica_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in November 2022 Offshore of Boca Chica Key, FL
Underwater images totaling 23,948 in number were collected offshore of Boca Chica Key, the Florida Keys , during November 2022, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted directly above the camera's central axis. The pole camera was attached to the gunwale of the USGS research vessel ... |
Info |
2023-310-FA_Oahu_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
Underwater images totaling 78,924 in number were collected offshore Fort Hase, Marine Corps Base Hawaii (MCBH) and Coconut Island, Oahu, Hawaii, during May 2023, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted above and forward of the camera's central axis. The Polecam system captured ... |
Info |
CoconutIsland_2023_MBES: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
An Ellipsoidally Referenced Survey (ERS) using a Norbit Winghead multibeam echosounder, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Coconut Island, on the island of Oahu, May 7, 2023. This dataset, CoconutIsland_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 0.25 meter (m) bathymetric grid and the dataset CoconutIsland_2023_MBES_Backscatter.zip includes the acoustic backscatter intensity ... |
Info |
FtHase_2023_MBES: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
An Ellipsoidally Referenced Survey (ERS) using a Norbit Winghead multibeam echosounder, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Fort Hase Marine Corps Base Hawaii (MCBH), on the island of Oahu, May 4-12, 2023. This dataset, FtHase_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid and the dataset FtHase_2023_MBES_Backscatter.zip includes the acoustic backscatter ... |
Info |