Kranenburg, Christine J.

About the author


Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Post-Hurricane Florence Aerial Imagery: Cape Fear to Duck, North Carolina, October 6-8, 2018

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic change, and for understanding coastal vulnerability and ...

Info
Time Series of Structure-from-Motion Products - Digital Elevation Models: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of DEMs ...

Info
Time Series of Structure-from-Motion Products - Multispectral Orthomosaics: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ...

Info
Time Series of Structure-from-Motion Products - Point Clouds: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ...

Info
Time Series of Structure-from-Motion Products - RGB Orthomosaics: Little Dauphin Island and Pelican Island, Alabama, September 2018 to April 2019

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of red ...

Info
Aerial Imagery of the North Carolina Coast: 2019-08-30 and 2019-09-02, Pre-Hurricane Dorian

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ...

Info
Aerial Imagery of the North Carolina Coast: 2019-09-08 to 2019-09-13, Post-Hurricane Dorian

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ...

Info
Aerial Imagery of the North Carolina Coast: 2019-10-11

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ...

Info
Aerial Imagery of the North Carolina Coast: 2019-11-26

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ...

Info
Aerial Imagery of the North Carolina Coast: 2020-02-08 to 2020-02-09

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ...

Info
Aerial Imagery of the North Carolina Coast: 2020-05-08 to 2020-05-09

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ...

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
Lidar-Derived Digital Elevation Model (DEM) Mosaic for EAARL-B Submerged Topography-Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation ...

Info
Lidar-Derived Point Cloud for EAARL-B Submerged Topography–—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
Time Series of Aerial Imagery from Small Unmanned Aircraft Systems and Associated Ground Control Points: Madeira Beach, Florida, July 2017 to June 2018 (Aerial Imagery)

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCPs) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data consisting of aerial ...

Info
Time Series of Aerial Imagery from Small Unmanned Aircraft Systems and Associated Ground Control Points: Madeira Beach, Florida, July 2017 to June 2018 (Surveyed GCPs)

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCPs) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data consisting of aerial ...

Info
Time Series of Structure-from-Motion Products - Digital Elevation Models: Madeira Beach, Florida, July 2017 to June 2018

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of DEMs ...

Info
Time Series of Structure-from-Motion Products - Orthomosaics: Madeira Beach, Florida, July 2017 to June 2018

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ...

Info
Time Series of Structure-from-Motion Products - Point Clouds: Madeira Beach, Florida, July 2017 to June 2018

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ...

Info
GNSS locations of lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021

This text file (2021-607-FA_Image_Locations.txt) provides the GNSS antenna location for underwater images collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image’s EXIF header due to decimal place limitations of the EXIF format.

Info
Overlapping lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021

Underwater images were collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The images are organized in zipped files grouped by survey line. The SQUID-5 system records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS date, time, and latitude and longitude of the GNSS antenna mounted on the towed surface vehicle, copyright, keywords, and ...

Info
Bathymetric digital elevation model (DEM) of Lake Tahoe near Dollar Point

Underwater images collected near Dollar Point in Lake Tahoe, California, were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified 3D point cloud. The DEM was derived in Metashape (ver. 1.6.4) from the point cloud, but it excludes the 'high noise' class. The DEM data were output as a geoTIFF raster at 25-mm resolution.

Info
Orthoimagery of Lake Tahoe near Dollar Point

Lakebed orthoimagery was developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimages were developed using both image-mosaic and image-averaging methods, which were then output as 5-mm resolution rasters. In general, the "Mosaic" product is somewhat sharper in resolution but will include some distinct seam lines and noticeable differences in image quality across the image. The "Average" ...

Info
Point cloud data of Lake Tahoe near Dollar Point

Three-dimensional point clouds (LAZ format) were developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'high noise') derived from the confidence values. LAZ is an open format developed for the efficient use of point cloud lidar data. A description of the LAZ ...

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A digital elevation model (DEM) mosaic was produced for Anegada, British Virgin Islands, from remotely sensed, geographically referenced elevation measurements collected by Watershed Sciences, Inc. (WSI)/Quantum Spatial using an Optech Orion M300 (1064-nm wavelength) lidar sensor on January 21, 2014.

Info
Lidar-Derived Seamless (Bare Earth and Submerged) Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
Lidar-Derived Seamless (Bare Earth and Submerged) Point Cloud for Coastal Topography—Anegada, British Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
Ground Control Point Data from the Outer Banks, North Carolina, post-Hurricane Dorian, September 2019

The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project surveyed 34 features visible from the air to be used as ground control points (GCP) on the Outer Banks, North Carolina, on September 24 and 25, 2019, after the passing of Hurricane Dorian (U.S. landfall on September 6, 2019). Global Positioning System (GPS) data were collected in support of aerial imagery surveys documenting the storm impacts and subsequent recovery along the coast and will be used as control and check points in ...

Info
Digital Elevation Models

This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data ...

Info
RGB averaged orthoimagery

This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data ...

Info
Structure-from-Motion bathymetric maps from the Florida Keys, 2019

Structure-from-Motion (SfM) bathymetric maps were created using seafloor images collected using the new 5-camera system SfM Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected during July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys during 3 days. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and ...

Info
Structure-from-Motion orthophotos from the Florida Keys, 2019

Georeferenced orthophotos were created from structure-from-motion (SfM) data using seafloor images collected using the new 5-camera system SfM Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys during 3 days. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including ...

Info
Structure-from-Motion point clouds from the Florida Keys, 2019

Structure-from-Motion (SfM) point clouds were created from seafloor images collected using the new 5-camera system SfM Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys during 3 days. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and senile reefs, ...

Info
Structure-from-Motion underwater photos from the Florida Keys, 2019

Underwater photos were collected using a new 5-camera system, the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and senile reefs, rubble, and sand. The images are ...

Info