USGS Quadrangles

quadrangle
Subtopics:
Breton Sound (5 items)
Daytona Beach (1 items)
Des Moines (22 items)
Hawaii (4 items)
Key West (4 items)
Manteo (9 items)
Mccook (20 items)
Mobile (32 items)
Monterey (10 items)
New York (4 items)
Pensacola (5 items)
Port Arthur (4 items)
Providence (2 items)
San Luis Obispo (10 items)
Tallahassee (4 items)

126 results listed by similarity [list alphabetically]
Santa_Rosa_Island_2021_SBES_xyz: Single-Beam Bathymetry Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Santa Rosa Island, Florida

From June 2 through 9, 2021, the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). Santa_Rosa_Island_2021_SBES_xyz.zip is a xyz point file dataset of field activity number (FAN) 2021-322-FA single-beam bathymetry (SBB) data collected concurrently with subbottom data to provide a current seafloor ...

Info
2021-322-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021

From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a line dataset of field activity number (FAN) 2021-322-FA chirp tracklines collected inshore and offshore of Pensacola Beach, FL.

Info
2021-322-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021

From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a point dataset of field activity number (FAN) 2021-322-FA chirp subbottom profile start of trackline locations collected inshore and offshore of Pensacola Beach, FL.

Info
2021-322-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021

From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a point dataset of field activity number (FAN) 2021-322-FA chirp subbottom profile 1,000-shot-interval locations collected inshore and offshore of Pensacola Beach, FL.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2021 Near Pensacola Beach, Florida

From June 2 through 9, 2021, researchers from the U.S. Geological Survey (USGS) conducted an inshore and offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Pensacola Beach, Florida (FL). The Coastal Resource Evaluation for Management Applications (CREMA) project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation ...

Info
2019-333-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2019-333-FA Offshore of the Rockaway Peninsula, New York, September–October 2019

From September 27 through October 5, 2019, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of the Rockaway Peninsula, New York. This shapefile represents a line dataset of field activity number (FAN) 2019-333-FA chirp tracklines.

Info
2019-333-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2019-333-FA Offshore of the Rockaway Peninsula, New York, September–October 2019

From September 27 through October 5, 2019, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of the Rockaway Peninsula, New York. This shapefile represents a point dataset of field activity number (FAN) 2019-333-FA chirp subbottom profile start of trackline locations.

Info
2019-333-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2019-333-FA Offshore of the Rockaway Peninsula, New York, September–October 2019

From September 27 through October 5, 2019, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of the Rockaway Peninsula, New York. This shapefile represents a point dataset of field activity number (FAN) 2019-333-FA chirp subbottom profile 1,000-shot-interval locations.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2019 from Rockaway Peninsula, New York

From September 27 through October 5, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near the Rockaway Peninsula, New York. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2018-01-29

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-21

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-07

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using a UAS-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Ricoh GR camera in DNG format and processed using structure-from-motion photogrammetry with ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-10-12

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using a UAS-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Ricoh GR camera in DNG format and processed using structure-from-motion photogrammetry ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-26

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-13

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-05-27

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-05-19

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point Cloud Coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-03-08

Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ...

Info
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 1967-10-18

Presented here is a point cloud produced by the U.S. Geological Survey (USGS) from historical U.S. Air Force vertical aerial imagery, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was downloaded from USGS Eros Data Center and processed using structure-from-motion ...

Info
Archive of Chirp Subbottom Profile Data Collected in 2017 from the Louisiana Chenier Plain

June 2–10 and July 2, 2017, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of the Louisiana Chenier Plain to document the changing morphology of the coastal environment. Data were collected under the Barrier Island Coastal Monitoring (BICM) program, an ongoing collaboration between the State of Louisiana Coastal Protection and Restoration Authority (CPRA), the University of New Orleans (UNO) Pontchartrain Institute for Environmental Sciences (PIES), and the USGS. Project ...

Info
Chenier_Plain_2017_SBB_XYZ_metadata: Nearshore Single-Beam Bathymetry XYZ Data Collected in 2017 from the Chenier Plain, Louisiana

As a part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the Chenier Plain, Louisiana from Marsh Island to Sabine Pass. The goal of the BICM program is to provide long-term data on Louisiana's coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in ...

Info
Chenier_Plain_2017_SBB_ITRF00_Trackline_metadata: Nearshore Single-Beam Bathymetry XYZ Data Collected in 2017 from the Chenier Plain, Louisiana

As a part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the Chenier Plain, Louisiana from Marsh Island to Sabine Pass. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described ...

Info
Chenier_Plain_2017_SBB_200m_DEM_metadata: Nearshore Single-Beam Bathymetry XYZ Data Collected in 2017 from the Chenier Plain, Louisiana

As a part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the Chenier Plain, Louisiana from Marsh Island to Sabine Pass. The goal of the BICM program is to provide long-term data on Louisiana's coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in ...

Info
Town Neck Beach, Massachusetts, 5 cm 2016-2017 Orthomosaics

Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS ...

Info
Town Neck Beach, Massachusetts, 10 cm 2016-2017 Digital Elevation Models

Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS ...

Info
Discharge Measurements in Bayou Heron and Bayou Middle, Grand Bay, Mississippi, January 2017

Grand Bay, a 30-square-kilometer embayment of the Gulf of Mexico bordered by 20 square kilometers of salt marsh, is experiencing rapid lateral shoreline erosion at up to 5 meters per year. Determining whether the eroded sediment is exported to the deep ocean or imported via tidal channels and deposited on the marsh platform is critical to understanding the long-term response of the marsh to wave attack and sea-level rise. Quantifying water-column sediment flux helps to characterize the role of tidal ...

Info
Suspended-sediment concentration data from water samples collected in 2016-17 in Grand Bay, Alabama and Mississippi

Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes and estuaries. Marsh elevation, relative to sea level, is maintained by both organic material and the deposition of inorganic sediment. Additionally, horizontal marsh extent is altered by lateral erosion and accretion. In wetlands within and near Grand Bay National Estuarine Research Reserve, parts of the salt marsh are eroding relatively rapidly. To understand the connection between sediment fluxes and these ...

Info
Topobathy Products in Pea Island National Wildlife Refuge, North Carolina in November 2020 and April, September, and October 2021

The data in this part of the release characterize the beach and nearshore environment at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge (PINWR) and at the Basnight Bridge (BB), NC. In November 2020, April, September, and October 2021, USGS and Woods Hole Oceanographic Institute (WHOI) scientists conducted multiple field surveys to collect a topobathy elevation time series. Bathymetry for topobathy products was collected in the nearshore using a single-beam ...

Info
Single-beam bathymetric data in Pea Island National Wildlife Refuge, North Carolina in November 2020 and April, September, and October 2021

The data in this part of the release are bathymetry data collected in the nearshore using single-beam echosounders mounted on surf capable self-righting electric autonomous survey vehicles at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge (PINWR) and at the Basnight Bridge (BB), NC. In November 2020, April, September, and October 2021, USGS and Woods Hole Oceanographic Institute (WHOI) scientists conducted multiple field surveys to collect the bathymetry as ...

Info
Sidescan sonar bathymetry products at the Pea Island National Wildlife Refuge DUNEX Site, North Carolina in October 2021

The data in this section of the release characterizes the nearshore bathymetry collected in October 2021 by USGS and Woods Hole Oceanographic Institute (WHOI) scientists using a self-righting electric uncrewed surface vehicle with a sidescan sonar attached. Data collection occured at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge (PINWR). DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study ...

Info
Orthomosaics of Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021

The data in this part of the release are orthomosaics that characterize the beach at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. During September and October 2021, USGS and Woods Hole Oceanographic Institute (WHOI) scientists conducted multiple field surveys to collect a topobathy elevation time series. Images of the beach for use in structure from motion were taken with a camera attached to a helium filled balloon-kite (Helikite). Agisoft Metashape (v ...

Info
Low-altitude aerial imagery collected from a Helikite at the Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021

The data in this part of the release are images of the beach for use in structure from motion that were taken with a camera attached to a helium filled balloon-kite (Helikite). During September and October 2021, USGS and Woods Hole Oceanographic Institute (WHOI) scientists conducted multiple field surveys to collect an elevation time series at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. Agisoft Metashape (v. 1.8.1) was used to create orthomosaics and ...

Info
Ground control points collected for Helikite operations at the Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021

The data in this part of the release provide the location information of the temporary ground control points placed on the beach at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study nearshore coastal processes during storm events. USGS participation in DUNEX will contribute new measurements and models that will increase our understanding ...

Info
Digital surface models of Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021

The data in this part of the release are digital surface models (DSMs) that characterize the beach at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study nearshore coastal processes during storm events. USGS participation in DUNEX will contribute new measurements and models that will increase our understanding of storm impacts to coastal ...

Info
Grain-size analysis data of sediment samples from the beach and nearshore environments at the Pea Island National Wildlife Refuge DUNEX site, North Carolina in 2021

These data provide grain-size measurements from sediment samples collected as part of the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study nearshore coastal processes during storm events. USGS participation in DUNEX will contribute new measurements and models that will increase our understanding of storm impacts to coastal environments, ...

Info
Reference marks, walking GPS surveys, CoastCam GCPs, and instrument location data in Pea Island National Wildlife Refuge, North Carolina in November 2020, April, September, and October 2021 (ver. 1.1, May 2024)

The data in this part of the release contains GPS data as reference marks, walking surveys, and location data of deployed beach instrumentation on Pea Island National Wildlife Refuge (PINWR) at the USGS DUring Nearshore Event eXperiment (DUNEX) site and at Basnight Bridge (BB), NC. DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study nearshore coastal processes during storm events. USGS participation in DUNEX will contribute new ...

Info
Grain-Size Analysis Data from Sediment Samples in Support of Oceanographic and Water-Quality Measurements in the Nearshore Zone of Matanzas Inlet, Florida, 2018

The interactions of waves and currents near an inlet influence sediment and alter sea-floor bedforms, especially during winter storms. As part of the Cross-Shore and Inlets Processes project to improve our understanding of cross-shore processes that control sediment budgets, the U.S. Geological Survey deployed instrumented platforms at two sites near Matanzas Inlet between January 24 and April 13, 2018. Matanzas Inlet is a natural, unmaintained inlet on the Florida Atlantic coast that is well suited for ...

Info
2023-310-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2023-310-FA Offshore of Kailua, Hawaii, May 2023

From May 7-13, 2022, the U.S. Geological Survey (USGS) conducted a geologic assessment, including bathymetric mapping, near Kailua, Hawaii in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a line dataset of field activity number (FAN) 2023-310-FA chirp tracklines.

Info
2023-310-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2023-310-FA Offshore of Kailua, Hawaii, May 2023

From May 7-13, 2022, the U.S. Geological Survey (USGS) conducted a geologic assessment, including bathymetric mapping, near Kailua, Hawaii in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced ...

Info
2023-310-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2023-310-FA Offshore of Kailua, Hawaii, May 2023

From May 7-13, 2023, the U.S. Geological Survey (USGS) conducted a geologic assessment, including bathymetric mapping, near Kailua, Hawaii in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2023-310-FA chirp subbottom ...

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in May 2023 from Oahu, Hawaii

As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterizing stratigraphy near Oahu, Hawaii (HI) May 7-13, 2023. The purpose of this study was to conduct a geologic assessment (including bathymetric mapping) near Fort Hase Beach, ...

Info
2022-334-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-334-FA Offshore of Boca Chica Key, Florida, November 2022

From November 8-13, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Boca Chica Key, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a line dataset of field activity number (FAN) 2022-334-FA chirp tracklines.

Info
2022-334-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-334-FA Offshore of Boca Chica Key, Florida, November 2022

From November 8-13, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Boca Chica Key, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-334-FA chirp subbottom profile start of trackline ...

Info
2022-334-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-334-FA Offshore of Boca Chica Key, Florida, November 2022

From November 8-13, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Boca Chica Key, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-334-FA chirp subbottom profile 1,000-shot-interval ...

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 from Boca Chica Key, Florida

As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey at the nearshore ledge offshore of Boca Chica Key, Florida (FL) November 8-13, 2022. The objective of the project was to collect bathymetric maps and conduct a geologic assessment of the nearshore ledge off Boca Chica Key in support ...

Info
2022-312-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-312-FA Near Panama City, Florida, November 2022

From June 20-30, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport near Panama City, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a line dataset of field activity number (FAN) 2022-312-FA chirp tracklines.

Info
2022-312-FA _sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-312-FA Near Panama City, Florida, June 2022

From June 20-30, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport near Panama City, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-312-FA chirp subbottom profile start of trackline locations.

Info
2022-312-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-312-FA Near Panama City, Florida, November 2022

From June 20-30, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport near Panama City, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-312-FA chirp subbottom profile 1,000-shot-interval locations.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in June 2022 Near Panama City, Florida

As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map back-barrier and lagoonal areas, as well as characterizing stratigraphy near Panama City, Florida (FL) in June 2022. The purpose of this study was to conduct a geologic assessment (including bathymetric mapping) of the environs ...

Info
Coastal Single-beam Bathymetry Data Collected in 2022 From Breton Island, Louisiana

As part of the restoration monitoring component of the Deepwater Horizon early restoration project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted single-beam and multibeam bathymetry surveys around Breton Island, Louisiana (LA), from August 3-5, 2022, for Field Activity Number (FAN) 2022-328-FA. The purpose of data collection was to develop a baseline digital elevation model of the seafloor around Breton Island for comparison with both ...

Info
2022-328-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-328-FA Offshore of Breton Island, Louisiana, August 2022

On August 5, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Breton Island, Louisiana (LA). Geophysical data were collected as part of the Breton Island Post Construction Monitoring project. This shapefile represents a line dataset of field activity number (FAN) 2022-328-FA chirp tracklines.

Info
2022-328-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-328-FA Offshore of Breton Island, Louisiana, August 2022

On August 5, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Breton Island, Louisiana (LA). Geophysical data were collected as part of the Breton Island Post Construction Monitoring project. This shapefile represents a point dataset of field activity number (FAN) 2022-328-FA chirp subbottom profile start of trackline locations.

Info
2022-328-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-328-FA Offshore of Breton Island, Louisiana, August 2022

On August 5, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Breton Island, Louisiana (LA). Geophysical data were collected as part of the Breton Island Post Construction Monitoring project. This shapefile represents a point dataset of field activity number (FAN) 2022-328-FA chirp subbottom profile 1,000-shot-interval locations.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 Offshore of Breton Island, Louisiana

On August 5, 2022, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Breton Island, Louisiana (LA). The Breton Island Post Construction Monitoring project objective includes the investigation of nearshore geologic controls on surface morphology in addition to mapping the seafloor to evaluate coastal change. This publication (Forde and others, 2023) serves as an archive of high-resolution chirp subbottom ...

Info
Single-Beam Bathymetry Data Collected in March 2021 from Grand Bay and Point Aux Chenes Bay, Mississippi/Alabama

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) in St. Petersburg, Florida, conducted a bathymetric survey of Point Aux Chenes Bay and a small portion of Grand Bay, Mississippi/Alabama, from March 3-6, 2021. Efforts were supported by the Estuarine and MaRsh Geology project (EMRG), and the data described will provide baseline bathymetric information for future research investigating wetland/marsh evolution, sediment transport, and recent and long-term ...

Info
Sediment Core Microfossil Data Collected from the Coastal Marsh of Grand Bay National Estuarine Research Reserve, Mississippi, USA

To aid in geologic studies of sediment transport and environmental change in coastal marsh, 1-centimeter (cm) foraminiferal subsamples were taken from seven sediment push cores collected in the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi, in October 2016. The push cores were collected along two, shore-perpendicular transects at 5, 15, 25, and 50 meters (m) from the shoreline, on opposite sides of Middle Bay during U.S. Geological Survey (USGS) Field Activities Number (FAN) 2016-358 ...

Info
Water_Level_na: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Water_Level_na_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Water_Level_all: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Water_Level_all_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Water_Level_GBI: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Water_Level_GBI_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Velocity_na: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Velocity_na_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Velocity_all: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Velocity_all_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Velocity_GBI: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Velocity_GBI_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_na_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_na_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_na_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_na_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_all_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_all_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_all_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_all_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_GBI_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_GBI_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_GBI_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
Salinity_GBI_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results

Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ...

Info
2015-330-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015

From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a line dataset of field activity number (FAN) 2015-330-FA chirp tracklines.

Info
2015-330-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015

From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a point dataset of field activity number (FAN) 2015-330-FA chirp subbottom profile start of trackline locations.

Info
2015-330-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015

From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a point dataset of field activity number (FAN) 2015-330-FA chirp subbottom profile 1,000-shot-interval locations.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2015 Offshore of Dauphin Island, Alabama

From September 16 through 23, 2015, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Dauphin Island, Alabama (AL). The Alabama Barrier Island Restoration Feasibility Study project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic ...

Info
Low-altitude aerial imagery collected from a Helikite at Marconi Beach, Wellfleet, MA on March 22, 2024

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2024-016-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of two video cameras aimed at the beach (CoastCam CACO-02). In ...

Info
Bathymetric data and grid of offshore Marconi Beach, Wellfleet, MA on April 23, 2024

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2024-016-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of two video cameras aimed at the beach (CoastCam CACO-02). In ...

Info
Location and analyses of sediment samples collected at Marconi Beach, Wellfleet during field activity 2021-022-FA on March 10, 2021 (ver. 2.0, December 2023)

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Low-altitude aerial imagery collected from a Helikite at Marconi Beach, Wellfleet, MA on March 22, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Topobathy grid representing the backshore to the nearshore environment at Marconi Beach, Wellfleet from data taken during field activity 2021-022-FA on March 10 and 17, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Orthomosaic representing Marconi Beach, Wellfleet from images acquired during field activity 2021-022-FA on March 17, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Reference marks, ground control points, navigation, and elevation data from pole surveys at Marconi Beach, Wellfleet during field activity 2021-022-FA on January 14 and 15 & March 10 and 17, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Low-altitude aerial imagery collected from a helium powered balloon-kite at Marconi Beach, Wellfleet during field activity 2021-022-FA on March 17, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Digital surface model representing Marconi Beach, Wellfleet during field activity 2021-022-FA on March 17, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Bathymetric grid during field activity 2021-022-FA offshore Marconi Beach, Wellfleet MA on March 10, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA

Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at one site landward and three sites seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld multiparameter sonde, and water samples were collected for determination of suspended-sediment ...

Info
Orthomosaic representing Marconi Beach, Wellfleet, MA on March 22, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Ground control points Marconi Beach, Wellfleet, MA on March 22, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Digital Surface Model representing Marconi Beach, Wellfleet, MA on March 22, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Bathymetric data and grid of offshore Marconi Beach, Wellfleet, MA on March 20, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Topobathy grid representing the backshore to the nearshore at Marconi Beach, Wellfleet from data collected on March 11 and 16, 2022

The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Orthomosaic representing Marconi Beach, Wellfleet, MA March 11, 2022

The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Low-altitude georeferenced aerial imagery collected from a Helikite at Marconi Beach, Wellfleet on March 11, 2022

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Bathymetric data and grid representing single-beam data offshore Marconi Beach, Wellfleet, MA on March 16, 2022

The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Digital surface model representing Marconi Beach, Wellfleet on March 11, 2022

The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
SfM digital surface model and orthomosaic representing Head of the Meadow Beach, Truro, MA on March 20, 2024

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ...

Info
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro, MA on March 20, 2024

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ...

Info
Ground control points Head of the Meadow Beach, Truro, MA on March 20, 2024

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ...

Info
Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, MA on February 9, 2024

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ...

Info
Topobathy grid representing the backshore to the nearshore environment at Head of the Meadow Beach, Truro from data collected during field activity 2021-014-FA on February 4 and 11, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Orthomosaic representing Head of the Meadow Beach, Truro from images collected during field activity 2021-014-FA on February 4, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Ground control points at Head of the Meadow, Truro during field activity 2021-014-FA on February 4, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro during field activity 2021-014-FA on February 4, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Digital surface model representing Head of the Meadow Beach, Truro during field activity 2021-014-FA on February 04, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Bathymetric data during field activity 2021-014-FA offshore Head of the Meadow Beach, Truro MA on February 11, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Orthomosaic representing Head of the Meadow Beach, Truro, MA on March 10, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Ground control points Head of the Meadow Beach, Truro, MA on March 10, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro, MA on March 10, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Digital Surface Model representing Head of the Meadow Beach, Truro, MA on March 10, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, MA on April 7, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Ground control points used at Marconi Beach, Wellfleet on March 11, 2022

The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Topobathy grid representing the backshore to the nearshore at Head of the Meadow Beach, Truro from data collected on March 10 and 18, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info
Orthomosaic representing Head of the Meadow Beach, Truro on March 10, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info
Ground control points at Head of the Meadow Beach, Truro on March 10, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro on March 10, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info
Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, on March 18, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info
Digital surface model representing Head of the Meadow Beach, Truro on March 10, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info