Data and calculations to support the study of the sea-air flux of methane and carbon dioxide on the West Spitsbergen margin in June 2014
A critical question for assessing global greenhouse gas budgets is how much of the methane that escapes from seafloor cold seep sites to the overlying water column eventually crosses the sea-air interface and reaches the atmosphere. The issue is particularly important in Arctic Ocean waters since rapid warming there increases the likelihood that gas hydrate--an ice-like form of methane and water stable at particular pressure and temperature conditions within marine sediments--will break down and release its ... |
Info |
Substrate properties for invertebrate comparisons in Bellingham Bay, Washington, July 2019 and July-August 2020
Sediment grain-size distributions and total organic carbon contents were measured at four intertidal sites and three subtidal sites along the urban waterfront (east shore) of Bellingham Bay, Washington, July 3-11, 2019 and June 6-August 31, 2020. Intertidal substrate was sampled in eelgrass beds, and subtidal substrate was sampled inside and outside of the deep edge of eelgrass beds. |
Info |
Eelgrass and substrate characteristics in Bellingham Bay, Washington, July 2019
Eelgrass (Zostera marina) characteristics, sediment grain size distributions, sediment total organic carbon contents (TOC), carbon isotope ratios of sediment organic matter, and total carbon to total nitrogen ratios were measured at four lower intertidal sites in Bellingham Bay, Washington, July 2-5, 2019. |
Info |
Model parameter input files to study three-dimensional flow over coral reef spur-and-groove morphology
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning ... |
Info |
Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a ... |
Info |
Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) ... |
Info |
Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents raw aerial imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted in a nadir orientation using a fixed mount. Before each flight, the camera’s digital ISO, aperture, and shutter speed were adjusted for ambient light ... |
Info |
Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts
This data release includes the XBeach input data files used to evaluate the importance of explicitly modeling sea-swell waves for runup. This was examined using a 2D XBeach short wave-averaged (surfbeat, XB-SB) and a wave-resolving (non-hydrostatic, XB-NH) model of Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands. Results show that explicitly modelling the sea-swell component (using XB-NH) provides a better approximation of the observed runup than XB-SB (which only models the time ... |
Info |
Physics-based numerical model simulations of wave propagation over and around theoretical atoll and island morphologies for sea-level rise scenarios
Schematic atoll models with varying theoretical morphologies were used to evaluate the relative control of individual morphological parameters on alongshore transport gradients. Here we present physics-based numerical SWAN model results of incident wave transformations for a range of atoll and island morphologies and sea-level rise scenarios. Model results are presented in NetCDF format, accompanied by a README text file that lists the parameters used in each model run. These data accompany the following ... |
Info |
Modeled effects of depth and semidiurnal temperature fluctuations on predictions of year that coral reef locations reach annual severe bleaching for various global climate model projections
Using global climate model projections of sea-surface temperature at coral reef sites, we modeled the effects of depth and exposure to semidiurnal temperature fluctuations to examine how these effects may alter the projected year of annual severe bleaching for coral reef sites globally. Here we present the first global maps of the effects these processes have on bleaching projections for three IPCC-AR5 emissions scenarios. |
Info |
Coral reef profiles for wave-runup prediction
This data release includes representative cluster profiles (RCPs) from a large (>24,000) selection of coral reef topobathymetric cross-shore profiles (Scott and others, 2020). We used statistics, machine learning, and numerical modelling to develop the set of RCPs, which can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the data were reduced by clustering cross-shore profiles based on morphology and hydrodynamic ... |
Info |
Model parameter input files to compare the influence of channels in fringing coral reefs on alongshore variations in wave-driven runup along the shoreline
An extensive set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate the influence of shore-normal reef channels on flooding along fringing reef-lined coasts, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Storlazzi, C.D., Rey, A.E., and van Dongeren, A.R., 2022, ... |
Info |
Projected flood water depths on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands
Projected future wave-driven flooding depths on Roi-Namur Island on Kwajalein Atoll in the Republic of the Marshall Islands for a range of climate-change scenarios. This study utilized field data to calibrate oceanographic and hydrogeologic models, which were then used with climate-change and sea-level rise projections to explore the effects of sea-level rise and wave-driven flooding on atoll islands and their freshwater resources. The overall objective of this effort, due to the large uncertainty in ... |
Info |
BEWARE database: A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts
A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on ... |
Info |
HyCReWW database: A hybrid coral reef wave and water level metamodel
We developed the HyCReWW metamodel to predict wave run-up under a wide range of coral reef morphometric and offshore forcing characteristics. Due to the complexity and high dimensionality of the problem, we assumed an idealized one-dimensional reef profile, characterized by seven primary parameters. XBeach Non-Hydrostatic was chosen to create the synthetic dataset and Radial Basis Functions implemented in Matlab were chosen for interpolation. Results demonstrate the applicability of the metamodel to obtain ... |
Info |
Model parameter input files to compare locations of coral reef restoration on different reef profiles to reduce coastal flooding
This dataset consists of physics-based XBeach Non-hydrostatic hydrodynamic models input files used to study how coral reef restoration affects waves and wave-driven water levels over coral reefs, and the resulting wave-driven runup on the adjacent shoreline. Coral reefs are effective natural coastal flood barriers that protect adjacent communities. Coral degradation compromises the coastal protection value of reefs while also reducing their other ecosystem services, making them a target for restoration. ... |
Info |
Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project ... |
Info |
Water level and velocity measurements from the 2012 University of Western Australia Fringing Reef Experiment (UWAFRE)
This data release contains water level and velocity measurements from wave runup experiments performed in a laboratory flume setting. Wave-driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef-fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms. The 2012 University of Western Australia Fringing Reef ... |
Info |
BEWARE2 database: A meta-process model to assess wave-driven flooding hazards on morphologically diverse, coral reef-lined coasts
This dataset contains the reef profiles and resulting hydrodynamic outputs of the "Broad-range Estimator of Wave Attack in Reef Environments" (BEWARE-2) meta-process modeling system. A process-based, wave-resolving hydrodynamic model (XBeach Non-Hydrostatic+, "XBNH+") was used to create a large synthetic database for use in BEWARE-2, relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE-2 improves system understanding ... |
Info |
Point cloud data of Looe Key, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format developed for ... |
Info |
Orthomosaic of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as Geographic Tagged Image File Format ... |
Info |
Quicklook Orthoimage of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. This "quicklook" version of the dataset was created using image-averaging methods and saved as ... |
Info |
Orthoimagery of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-averaging methods and saved as Geographic Tagged Image File Format ... |
Info |
Quicklook Digital Elevation Model (DEM) of Looe Key, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ... |
Info |
High Resolution Digital Elevation Model (DEM) of Looe Key, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ... |
Info |
Point cloud data of Summerland Ledge, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format ... |
Info |
Orthomosaic of Summerland Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-mosaicing methods and saved as a Geographic Tagged Image ... |
Info |
Orthoimagery of Summerland Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-averaging methods and saved as a Geographic Tagged Image ... |
Info |
Digital Elevation Model (DEM) of Summerland Ledge, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a ... |
Info |
Point cloud data of Big Pine Ledge, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) – and its compressed form, LAZ – is an open format ... |
Info |
Orthomosaic of Big Pine Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as a tiled Geographic Tagged ... |
Info |
Orthoimagery of Big Pine Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-averaging methods and saved as a tiled Geographic Tagged Image ... |
Info |
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.8.5) from the point cloud and includes points from both classes. The DEM covers a ... |
Info |
2023-310-FA_Oahu_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
Underwater images totaling 78,924 in number were collected offshore Fort Hase, Marine Corps Base Hawaii (MCBH) and Coconut Island, Oahu, Hawaii, during May 2023, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted above and forward of the camera's central axis. The Polecam system captured ... |
Info |
Point cloud data of Big Pine Ledge, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
Orthoimagery of Big Pine Ledge, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 650x120 meters (0.078 square kilometers) in size. It was created using image-averaging methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 650x120 meters (0 ... |
Info |
Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted ... |
Info |
Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a high-resolution orthomosaic image of the coral reef off Waiakane, Molokai, Hawaii. The orthomosaic has a resolution of 2.5 centimeters (cm) per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 24 June 2018. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre ... |
Info |
2022-334-FA_BocaChica_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in November 2022 Offshore of Boca Chica Key, FL
Underwater images totaling 23,948 in number were collected offshore of Boca Chica Key, the Florida Keys , during November 2022, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted directly above the camera's central axis. The pole camera was attached to the gunwale of the USGS research vessel ... |
Info |
Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is ... |
Info |
Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment ... |
Info |
Overlapping seabed images collected at Looe Key, Florida, 2021
A total of 94,567 underwater images were collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images in the Tagged Image File Format format to maintain the highest resolution and bit depth. Each image includes Exchangeable Image File (EXIF) metadata, containing Global ... |
Info |
Point cloud data of Looe Key, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
Orthoimagery of Looe Key, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 720x100 meters (0.072 square kilometers) in size. It was created using image-mosaicking methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
Digital elevation model (DEM) of Looe Key, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 720x100 meters (0.072 ... |
Info |
Overlapping seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021
Underwater images totaling 138,733 in number were collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS ... |
Info |
Point cloud data of Eastern Dry Rocks coral reef, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'low noise') derived from the confidence values. LAS (and its compressed form, LAZ) is an open format ... |
Info |
Bathymetric digital elevation model (DEM) of Eastern Dry Rocks coral reef, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was derived in Metashape (ver. 1.6.5) from the point cloud, but it excludes the 'low noise' class. The DEM covers a rectangular area of seafloor ... |
Info |
Orthoimagery of Eastern Dry Rocks coral reef, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (0.12 square kilometers) in size, and it was created using image-mosaicking methods and saved as a tiled, 5-mm resolution raster. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Coral geochemistry time series from Kahekili, west Maui
Geochemical analysis (including stable boron, boron:calcium ratio, and carbon and oxygen isotopes) were measured from coral cores collected in July 2013 from the shallow reef at Kahekili in Kaanapali, west Maui, Hawaii from scleractinian Porites lobata. |
Info |
Radiocarbon dating of deep-sea black corals collected off the southeastern United States
Results of radiocarbon dating of deep-sea (500 m to 700 m) black corals are presented. These corals were collected off the southeastern United States as part of the Southeastern United States Deep-Sea Corals (SEADESC) Initiative. |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2020-11-10
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, expanded AOI, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of an expanded area surrounding Whiskeytown Lake derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 14-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2018-12-02
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Topographic point cloud for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a topographic point cloud of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta, derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The point cloud contains 380,296,568 points at an approximate point density of 323 point per square-meter. Each point contains an explicit horizontal and vertical coordinate, color, intensity, and ... |
Info |
Orthomosaic imagery for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a high-resolution orthomosaic image of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The orthomosaic has a resolution of 3 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The raw imagery used to create the orthomosaic image was acquired using two UAS fitted with Ricoh GR II digital cameras with ... |
Info |
Ground control point locations for UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the Unmanned Aerial System (UAS) survey on of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The GCPs were used to establish ground control for the survey and consisted of 24 small (80 x 80 centimeter) square tarps with black-and-white cross patterns placed ... |
Info |
Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. ... |
Info |
Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The ... |
Info |
Geochemistry time series and growth parameters from Tutuila, American Samoa coral record
Geochemical analysis (including age-corrected radiocarbon stable isotopes, and elemental composition) and growth parameters (including calcification rate, density, and extension information) were measured from a coral core collected from a reef off the southern side of Tutuila, American Samoa. The core was collected near Matautuloa Point on 8 April 2012 in collaboration with the Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), ... |
Info |
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Shaded-relief image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic, resampled to 1-meter resolution, and merged with lidar bathymetry data to produce the shaded-relief image. |
Info |
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution. |
Info |
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ... |
Info |
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ... |
Info |
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-05-08 to 2020-05-09
RGB-averaged orthoimages were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2020-11-10
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. The orthomosaic is available in a high-resolution 5-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2019-11-12
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-11-12
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Radiocarbon age dating of biological material from cores collected off central California in 1999, 2006, and 2019
Results of radiocarbon age dating of planktic and benthic foraminifera collected from cores obtained in 1999, 2006, and 2019 offshore central California in the vicinity of Morro Bay. |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-10-11, one month Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Radiocarbon age dating of biological material from cores collected off British Columbia, Canada and southeastern Alaska, U.S. along the Queen Charlotte-Fairweather fault zone
Results of radiocarbon age dating of planktic foraminifera, benthic foraminifera, and pelecypod shell fragments collected from piston cores, trigger weight cores, and IKU grab samples obtained in 2015 and 2017 offshore British Columbia, Canada and southeastern Alaska, U.S. along the Queen Charlotte-Fairweather fault zone. |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-10-11, one-month post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Pharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017
Passive membrane samplers—semipermeable membrane devices and polar organic chemical integrative samplers—were deployed for 22 continuous days at 7 sites along the West Maui, Hawai'i, coastline in February and March 2017 to assess organic contaminants at shallow coral reef ecosystems from diverse upstream inputs. |
Info |