Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ... |
Info |
Transgressive contours--Santa Barbara Channel, California
This part of DS 781 presents data for the transgressive contours for the Santa Barbara Channel, California, region. The vector file is included in "TransgressiveContours_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial Maximum within California State Waters between Refugio Beach ... |
Info |
Depth to Transition--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ... |
Info |
Isopachs--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ... |
Info |
Sediment Thickness--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ... |
Info |
Transgressive Contours--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ... |
Info |
210Pb and 137Cs measurements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides 210Pb and 137Cs measurements in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Census counts of diatoms from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides census counts of diatoms in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Census counts of benthic foraminifera from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides census counts of benthic foraminifera in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Anthropogenic metals and other elements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides the measurement of anthropogenic metals and other elements in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Census counts of palynomorphs from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides census counts of palynomorphs in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Radiocarbon measurements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides radiocarbon measurements from a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Census counts of the non-indigenous benthic foraminifera Trochammina hadai Uchio obtained in 1983-2010 in San Francisco Bay, California
This data release provides census counts of the non-indigenous benthic foraminifera Trochammina hadai Uchio in surface sediment samples obtained in San San Francisco Bay, California from 1983-2010. |
Info |
Sediment thickness from seismic reflection data collected offshore of Eureka, California
This 100-m-resolution sediment thickness data raster for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seismic data were collected by the USGS in 2009 using a mini-sparker seismic systems installed on the Humboldt State University R/V Coral Sea. The data were processed by the USGS into segy format files. The data are available as a georeferenced TIFF image. |
Info |
Sediment trap and water column chemistry, Baltimore Canyon, U.S. Mid-Atlantic Bight
Time-series of sediment chemistry, including organic biomarker composition and bulk inorganic geochemical analytes, from samples collected over a one-year period in a sediment trap. The sediment traps were deployed at a depth between 603 m to 1318 m, and they were programmed to rotate a 250 mL sample bottle at 30 d intervals, delivering 12 samples during the 1-year deployment between August 2012 and June 2013. In addition, dissolved water column nutrient concentrations and water column trace element ... |
Info |
Daily sediment loads during and after dam removal in the Elwha River, Washington, 2011 to 2016
Daily values of discharge and sediment loads were measured and estimated at U.S. Geological Survey gaging station 12046260, on the Elwha River at the diversion near Port Angeles, Washington. Daily data are reported from September 15, 2011 to September 30, 2016. Specific data include (1) date; (2) discharge; (3) suspended-sediment concentration and one standard-deviation bounds; (4) percentage of fine-grained particles (silts and clays) in suspension; (5) loads of total suspended-sediment, fine-grained ... |
Info |
Monthly bedload estimates, Elwha River, Washington, October 2015 to September 2016
Bedload sediment transport was calculated on the Elwha River, Washington to measure the amount of sediment transported along the riverbed during the 2016 water year. Bedload was measured using the Elwha bedload impact plate system (Hilldale and others, 2015). Physical bedload sampling by the U.S. Bureau of Reclamation for system calibration took place during November, 2012; March, May, and June 2013; and April 2014 at the Diversion Weir gauge (Magirl and others, 2015). Early in water year 2016 (year 5) the ... |
Info |
Orthomosaic images of the middle and lower Elwha River, Washington, 2012 to 2017
This dataset presents 28 georeferenced orthomosaic images of the middle and lower reaches of the Elwha River. Each mosaic image was created by stitching together thousands of individual photographs that were matched based on numerous unique tie points shared by the photographs. The individual photographs were taken by a plane-mounted camera during multiple flights over the study area spanning 2012 to 2017. Because each mosaic is orthogonal to the earth's surface and is georeferenced to real-world ... |
Info |
Digital elevation models (DEMs) of the lower Elwha River, Washington, water year 2013 to 2016
Digital elevation models (DEMs) of the lower Elwha River, Washington, were created by synthesizing lidar and PlaneCam Structure-from-Motion (SfM) data. Lidar and still digital photographs were collected by airplane during surveys from 2012 to 2016. The digital photographs were used to create a SfM digital surface model. Each DEM represents the ending conditions for that water year (for example, the 2013 DEM represents conditions at approximately September 30, 2013). The final DEMs, presented here, were ... |
Info |
Elevations of the Elwha and Mills dams, Elwha River, Washington, 2008 to 2013
This dataset presents elevation measurements of two dams on the Elwha River, Washington, during their removal processes from 2008 to 2013. Elevation measurements of the Elwha Dam were taken from October 2008 to March 2012. Elevation measurements of the Glines Canyon dam, which was further upstream than the Elwha Dam, were taken from October 2010 to October 2013. The measurements were by the U.S. Bureau of Reclamation as part of a study investigating the river channel's morphological responses to dam removal ... |
Info |
Upstream sediment contributions to Lake Mills on the Elwha River, Washington, 1926 to 2016
Sediment inputs to Lake Mills, on the Elwha River, Washington, were measured from 1927 to 2016. These measurements represent the annual total sediment load, in tonnes per year, that were input into Lake Mills and partially trapped by Glines Canyon dam. The sediment was allowed to erode and be transported down-river by the removal of the Glines Canyon and Elwha dams during 2011 to 2014. The measurements were taken as part of a study investigating the river channel's morphological responses to the removal of ... |
Info |
Streamgage measurements, Elwha River, Washington, 2011 to 2016
Streamgage levels on the Elwha River were measured from 2011 to 2016. These measurements show the height of the river's water surface, both in meters relative to the stream bed, as well as in meters relative to vertical geographic coordinates. Measurements were collected using a Global Water WL16 battery-operated vented water level logger in a hardened casing. The instrument was installed on October 17, 2011 on the left bank of the Elwha River at a power line crossing above the Elwha Surface Water Intake ... |
Info |
Suspended sediment concentration data in the Elwha River, Washington, September 2011 to September 2016
This data release provides 15-minute data of suspended-sediment concentration and fine (less than 0.0625 mm) suspended-sediment concentration during the removal of 2 large dams on the Elwha River from September 2011 to September 2016. Data are derived from regression relations with turbidity at the USGS gaging station Elwha River at the Diversion (no.12046260). |
Info |
Grain size data from the Carmel River, central California, 2013 to 2021 (ver. 2.0, March 2022)
Pebble-count data were collected during summer surveys (2013, 2015, 2016, 2017, 2018, 2019, 2020, and 2021) at ten sites along the Carmel River, California. Grain-size measurements were made at four to six transects per site using a 0.5 by 0.5 m sampling frame, with approximately 100 sediment-particle counts per transect. Each transect was defined by coordinates on the left and right sides of the river, and sediment grain sizes were measured at five equally spaced locations within the bankfull channel on ... |
Info |
Depth to Transition--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ... |
Info |
Isopachs--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ... |
Info |
Sediment Thickness--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ... |
Info |
Transgressive Contours--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ... |
Info |
Depth to Transition--Bolinas to Pescadero, California
This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "DepthToTransition_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ... |
Info |
Isopachs--Bolinas to Pescadero, California
This part of DS 781 presents data for the isopachs for the Bolinas to Pescadero, California, region. The vector data file is included in "Isopachs_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters between offshore Offshore Bolinas and offshore Pescadero ... |
Info |
Sediment Thickness—Bolinas to Pescadero, California
This part of DS 781 presents data for the sediment-thickness map of the Bolinas to Pescadero, California, region. The raster data file is included in "SedimentThickness_BolinastoPescadero.zip," which is accessible from http://pubs.usgs.gov/ds/781/BolinastoPescadero/data_catalog_BolinastoPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ... |
Info |
Transgressive Contours--Bolinas to Pescadero, California
This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "TransgressiveContours_BolinasToPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from ... |
Info |
Depth to Transition--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the depth-to-transition map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "DepthToTransition_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Isopachs--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the isopachs for the Point Conception to Hueneme Canyon, California, region. The vector data file is included in "Isopachs_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection data collected in 2014 ... |
Info |
Sediment Thickness--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the sediment-thickness map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "SedimentThickness_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Transgressive Contours--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the transgressive contours for the Point Conception to Hueneme Canyon, California, region. The vector file is included in "TransgressiveContours_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Depth to Transition--Pigeon Point to Monterey, California
This part of DS 781 presents data for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "DepthToTransition_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ... |
Info |
Isopachs--Pigeon Point to Monterey, California
This part of DS 781 presents data for the sediment-thickness isopachs for the Pigeon Point to Monterey Bay, California, map region. The vector data file is included in "Isopachs_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ... |
Info |
Sediment Thickness--Pigeon Point to Monterey, California
This part of DS 781 presents data for the sediment-thickness map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "SedimentThickness_PigeonPointToMontereyBay.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from ... |
Info |
Transgressive Contours--Pigeon Point to Monterey, California
This part of DS 781 presents data for the transgressive contours for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The vector file is included in T "TransgressiveContours_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was ... |
Info |
Depth to Transition—Point Sur to Point Arguello, California
This part of DS 781 presents data for the depth-to-transition map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “DepthToTransition_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ... |
Info |
Isopachs—Point Sur to Point Arguello, California
This part of DS 781 presents data for the isopachs of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Isopachs_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, ... |
Info |
Sediment Thickness—Point Sur to Point Arguello, California
This part of DS 781 presents data for the sediment-thickness map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “SedimentThickness_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ... |
Info |
Transgressive Contours—Point Sur to Point Arguello, California
This part of DS 781 presents data for the transgressive contours of the Point Sur to Point Arguello, California, region. The vector data file is included in the “TransgressiveContours_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data ... |
Info |
Orthoimagery of Eastern Dry Rocks coral reef, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (0.12 square kilometers) in size, and it was created using image-mosaicking methods and saved as a tiled, 5-mm resolution raster. |
Info |
Bathymetric digital elevation model (DEM) of Eastern Dry Rocks coral reef, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was derived in Metashape (ver. 1.6.5) from the point cloud, but it excludes the 'low noise' class. The DEM covers a rectangular area of seafloor ... |
Info |
Point cloud data of Eastern Dry Rocks coral reef, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'low noise') derived from the confidence values. LAS (and its compressed form, LAZ) is an open format ... |
Info |
Overlapping seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021
Underwater images totaling 138,733 in number were collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS ... |
Info |
Digital elevation model (DEM) of Looe Key, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 720x100 meters (0.072 ... |
Info |
Orthoimagery of Looe Key, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 720x100 meters (0.072 square kilometers) in size. It was created using image-mosaicking methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
Point cloud data of Looe Key, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
Overlapping seabed images collected at Looe Key, Florida, 2021
A total of 94,567 underwater images were collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images in the Tagged Image File Format format to maintain the highest resolution and bit depth. Each image includes Exchangeable Image File (EXIF) metadata, containing Global ... |
Info |
Pharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017
Passive membrane samplers—semipermeable membrane devices and polar organic chemical integrative samplers—were deployed for 22 continuous days at 7 sites along the West Maui, Hawai'i, coastline in February and March 2017 to assess organic contaminants at shallow coral reef ecosystems from diverse upstream inputs. |
Info |
Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment ... |
Info |
Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is ... |
Info |
2022-334-FA_BocaChica_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in November 2022 Offshore of Boca Chica Key, FL
Underwater images totaling 23,948 in number were collected offshore of Boca Chica Key, the Florida Keys , during November 2022, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted directly above the camera's central axis. The pole camera was attached to the gunwale of the USGS research vessel ... |
Info |
Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a high-resolution orthomosaic image of the coral reef off Waiakane, Molokai, Hawaii. The orthomosaic has a resolution of 2.5 centimeters (cm) per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 24 June 2018. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre ... |
Info |
Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted ... |
Info |
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 650x120 meters (0 ... |
Info |
Orthoimagery of Big Pine Ledge, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 650x120 meters (0.078 square kilometers) in size. It was created using image-averaging methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
Point cloud data of Big Pine Ledge, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
2023-310-FA_Oahu_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
Underwater images totaling 78,924 in number were collected offshore Fort Hase, Marine Corps Base Hawaii (MCBH) and Coconut Island, Oahu, Hawaii, during May 2023, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted above and forward of the camera's central axis. The Polecam system captured ... |
Info |
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.8.5) from the point cloud and includes points from both classes. The DEM covers a ... |
Info |
Orthoimagery of Big Pine Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-averaging methods and saved as a tiled Geographic Tagged Image ... |
Info |
Orthomosaic of Big Pine Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as a tiled Geographic Tagged ... |
Info |
Point cloud data of Big Pine Ledge, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) – and its compressed form, LAZ – is an open format ... |
Info |
Digital Elevation Model (DEM) of Summerland Ledge, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a ... |
Info |
Orthoimagery of Summerland Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-averaging methods and saved as a Geographic Tagged Image ... |
Info |
Orthomosaic of Summerland Ledge, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-mosaicing methods and saved as a Geographic Tagged Image ... |
Info |
Point cloud data of Summerland Ledge, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format ... |
Info |
High Resolution Digital Elevation Model (DEM) of Looe Key, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ... |
Info |
Quicklook Digital Elevation Model (DEM) of Looe Key, Florida, 2022
A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ... |
Info |
Orthoimagery of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-averaging methods and saved as Geographic Tagged Image File Format ... |
Info |
Quicklook Orthoimage of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. This "quicklook" version of the dataset was created using image-averaging methods and saved as ... |
Info |
Orthomosaic of Looe Key, Florida, 2022
A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as Geographic Tagged Image File Format ... |
Info |
Point cloud data of Looe Key, Florida, 2022
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format developed for ... |
Info |
BEWARE2 database: A meta-process model to assess wave-driven flooding hazards on morphologically diverse, coral reef-lined coasts
This dataset contains the reef profiles and resulting hydrodynamic outputs of the "Broad-range Estimator of Wave Attack in Reef Environments" (BEWARE-2) meta-process modeling system. A process-based, wave-resolving hydrodynamic model (XBeach Non-Hydrostatic+, "XBNH+") was used to create a large synthetic database for use in BEWARE-2, relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE-2 improves system understanding ... |
Info |
Water level and velocity measurements from the 2012 University of Western Australia Fringing Reef Experiment (UWAFRE)
This data release contains water level and velocity measurements from wave runup experiments performed in a laboratory flume setting. Wave-driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef-fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms. The 2012 University of Western Australia Fringing Reef ... |
Info |
Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project ... |
Info |
Model parameter input files to compare locations of coral reef restoration on different reef profiles to reduce coastal flooding
This dataset consists of physics-based XBeach Non-hydrostatic hydrodynamic models input files used to study how coral reef restoration affects waves and wave-driven water levels over coral reefs, and the resulting wave-driven runup on the adjacent shoreline. Coral reefs are effective natural coastal flood barriers that protect adjacent communities. Coral degradation compromises the coastal protection value of reefs while also reducing their other ecosystem services, making them a target for restoration. ... |
Info |
HyCReWW database: A hybrid coral reef wave and water level metamodel
We developed the HyCReWW metamodel to predict wave run-up under a wide range of coral reef morphometric and offshore forcing characteristics. Due to the complexity and high dimensionality of the problem, we assumed an idealized one-dimensional reef profile, characterized by seven primary parameters. XBeach Non-Hydrostatic was chosen to create the synthetic dataset and Radial Basis Functions implemented in Matlab were chosen for interpolation. Results demonstrate the applicability of the metamodel to obtain ... |
Info |
BEWARE database: A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts
A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on ... |
Info |
Projected flood water depths on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands
Projected future wave-driven flooding depths on Roi-Namur Island on Kwajalein Atoll in the Republic of the Marshall Islands for a range of climate-change scenarios. This study utilized field data to calibrate oceanographic and hydrogeologic models, which were then used with climate-change and sea-level rise projections to explore the effects of sea-level rise and wave-driven flooding on atoll islands and their freshwater resources. The overall objective of this effort, due to the large uncertainty in ... |
Info |
Model parameter input files to compare the influence of channels in fringing coral reefs on alongshore variations in wave-driven runup along the shoreline
An extensive set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate the influence of shore-normal reef channels on flooding along fringing reef-lined coasts, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Storlazzi, C.D., Rey, A.E., and van Dongeren, A.R., 2022, ... |
Info |
Coral reef profiles for wave-runup prediction
This data release includes representative cluster profiles (RCPs) from a large (>24,000) selection of coral reef topobathymetric cross-shore profiles (Scott and others, 2020). We used statistics, machine learning, and numerical modelling to develop the set of RCPs, which can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the data were reduced by clustering cross-shore profiles based on morphology and hydrodynamic ... |
Info |
Modeled effects of depth and semidiurnal temperature fluctuations on predictions of year that coral reef locations reach annual severe bleaching for various global climate model projections
Using global climate model projections of sea-surface temperature at coral reef sites, we modeled the effects of depth and exposure to semidiurnal temperature fluctuations to examine how these effects may alter the projected year of annual severe bleaching for coral reef sites globally. Here we present the first global maps of the effects these processes have on bleaching projections for three IPCC-AR5 emissions scenarios. |
Info |
Physics-based numerical model simulations of wave propagation over and around theoretical atoll and island morphologies for sea-level rise scenarios
Schematic atoll models with varying theoretical morphologies were used to evaluate the relative control of individual morphological parameters on alongshore transport gradients. Here we present physics-based numerical SWAN model results of incident wave transformations for a range of atoll and island morphologies and sea-level rise scenarios. Model results are presented in NetCDF format, accompanied by a README text file that lists the parameters used in each model run. These data accompany the following ... |
Info |
Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts
This data release includes the XBeach input data files used to evaluate the importance of explicitly modeling sea-swell waves for runup. This was examined using a 2D XBeach short wave-averaged (surfbeat, XB-SB) and a wave-resolving (non-hydrostatic, XB-NH) model of Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands. Results show that explicitly modelling the sea-swell component (using XB-NH) provides a better approximation of the observed runup than XB-SB (which only models the time ... |
Info |
Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents raw aerial imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted in a nadir orientation using a fixed mount. Before each flight, the camera’s digital ISO, aperture, and shutter speed were adjusted for ambient light ... |
Info |
Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) ... |
Info |
Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a ... |
Info |
Model parameter input files to study three-dimensional flow over coral reef spur-and-groove morphology
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning ... |
Info |
Habitat--Offshore of Bodega Head, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bodega Head map area, California. The vector data file is included in "Habitat_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E. ... |
Info |
Habitat--Offshore of Pacifica, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Pacifica map area, California. The vector data file is included in "Habitat_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross ... |
Info |
Habitat--Offshore of Bolinas, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bolinas map area, California. The vector data file is included in "Habitat_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ... |
Info |
Habitat--Offshore of Half Moon Bay, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Half Moon Bay map area, California. The polygon shapefile is included in "Habitat_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ... |
Info |
Habitat--Offshore of Salt Point, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Salt Point map area, California. The vector data file is included in "Habitat_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Habitat--Offshore of San Francisco, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of San Francisco map area, California. The vector data file is included in "Habitat_SanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., Kvitek, R.G. ... |
Info |
Habitat--Offshore of San Gregorio, California
This part of SIM 3306 presents data for the habitat map of the Offshore of San Gregorio map area, California. The vector data file is included in "Habitat_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey, M.D., Bretz, C ... |
Info |
Habitat--Offshore of Aptos, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Aptos map area, California. The vector data file is included in "Habitat_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ... |
Info |
Habitat--Offshore Santa Cruz, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Santa Cruz map area, California. The vector data file is included in "Habitat_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier ... |
Info |
Habitat--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Point Reyes map area, California. The vector data file is included in "Habitat_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ... |
Info |
Habitat--Offshore of Tomales Point, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Tomales Point map area, California. The polygon shapefile is included in "Habitat_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., ... |
Info |
Habitat--Offshore of Carpinteria, California
This part of DS 781 presents habitat data in the Offshore of Carpinteria map area, California. The vector data file is included in "Habitat_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.D., Wong, F.L ... |
Info |
Habitat--Offshore of Coal Oil Point, California
This part of DS 781 presents the habitat map of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Habitat_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, L.M., Greene, ... |
Info |
Habitat--Offshore of Fort Ross, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Fort Ross map area, California. The polygon shapefile is included in "Habitat_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ... |
Info |
Habitat--Offshore of Refugio Beach, California
This part of DS 781 presents the habitat map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Habitat_RefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., Seitz, G.G., Endris, C.A., Sliter ... |
Info |
Habitat--Offshore of Santa Barbara, California
This part of DS 781 presents data for the habitat map of the Offshore of Santa Barbara map area, California. The vector data file is included in "Habitat_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., ... |
Info |
Habitat--Offshore of Ventura, California
This part of DS 781 presents habitat data in the Offshore of Ventura map area, California. The vector data file is included in "Habitat_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ... |
Info |
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution. |
Info |
Shaded-relief image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic, resampled to 1-meter resolution, and merged with lidar bathymetry data to produce the shaded-relief image. |
Info |
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Habitat--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the habitat map of the seafloor of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Habitat_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ... |
Info |
Habitat--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the habitat map of the seafloor of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Habitat_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ... |
Info |
Habitat--Offshore of Monterey, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Monterey map area, California. The vector data file is included in "Habitat_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds. ... |
Info |
Habitat--Offshore Pigeon Point, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Pigeon Point map area, California. The vector data file is included in "Habitat_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., ... |
Info |
Habitat--Offshore Scott Creek, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in "Habitat_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-10-11, one-month post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial ... |
Info |
Radiocarbon age dating of biological material from cores collected off British Columbia, Canada and southeastern Alaska, U.S. along the Queen Charlotte-Fairweather fault zone
Results of radiocarbon age dating of planktic foraminifera, benthic foraminifera, and pelecypod shell fragments collected from piston cores, trigger weight cores, and IKU grab samples obtained in 2015 and 2017 offshore British Columbia, Canada and southeastern Alaska, U.S. along the Queen Charlotte-Fairweather fault zone. |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-10-11, one month Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Radiocarbon age dating of biological material from cores collected off central California in 1999, 2006, and 2019
Results of radiocarbon age dating of planktic and benthic foraminifera collected from cores obtained in 1999, 2006, and 2019 offshore central California in the vicinity of Morro Bay. |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-11-12
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2019-11-12
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2020-11-10
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. The orthomosaic is available in a high-resolution 5-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-05-08 to 2020-05-09
RGB-averaged orthoimages were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
Geochemistry time series and growth parameters from Tutuila, American Samoa coral record
Geochemical analysis (including age-corrected radiocarbon stable isotopes, and elemental composition) and growth parameters (including calcification rate, density, and extension information) were measured from a coral core collected from a reef off the southern side of Tutuila, American Samoa. The core was collected near Matautuloa Point on 8 April 2012 in collaboration with the Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), ... |
Info |
Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The ... |
Info |
Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. ... |
Info |
Ground control point locations for UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the Unmanned Aerial System (UAS) survey on of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The GCPs were used to establish ground control for the survey and consisted of 24 small (80 x 80 centimeter) square tarps with black-and-white cross patterns placed ... |
Info |
Orthomosaic imagery for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a high-resolution orthomosaic image of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The orthomosaic has a resolution of 3 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The raw imagery used to create the orthomosaic image was acquired using two UAS fitted with Ricoh GR II digital cameras with ... |
Info |
Topographic point cloud for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a topographic point cloud of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta, derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The point cloud contains 380,296,568 points at an approximate point density of 323 point per square-meter. Each point contains an explicit horizontal and vertical coordinate, color, intensity, and ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2018-12-02
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, expanded AOI, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of an expanded area surrounding Whiskeytown Lake derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 14-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with 8-bit ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2020-11-10
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Radiocarbon dating of deep-sea black corals collected off the southeastern United States
Results of radiocarbon dating of deep-sea (500 m to 700 m) black corals are presented. These corals were collected off the southeastern United States as part of the Southeastern United States Deep-Sea Corals (SEADESC) Initiative. |
Info |
Coral geochemistry time series from Kahekili, west Maui
Geochemical analysis (including stable boron, boron:calcium ratio, and carbon and oxygen isotopes) were measured from coral cores collected in July 2013 from the shallow reef at Kahekili in Kaanapali, west Maui, Hawaii from scleractinian Porites lobata. |
Info |
Microbial Ecology of the Floridan Aquifer near Okeechobee, FL: Uptake and Inactivation Data
This metadata record describes the microbial uptake of nutrients by native planktonic and biofilm-associated bacteria and the inactivation of E. coli, MS2 bacteriophage, polio virus and Cryptosporidium parvum in the Upper Floridan Aquifer (approximately 1,000 feet below land surface) in the Okeechobee, Florida area. Groundwater samples were collected or accessed via the use of a mesocosm between 2018 and 2020 from a South Florida Water Management District (SFWMD) monitoring well installed at the Kissimmee ... |
Info |
Microbial Ecology of the Floridan Aquifer near Okeechobee, FL
This metadata record describes the microbial uptake of nutrients by native planktonic and biofilm-associated bacteria within the Upper Floridan Aquifer (approximately 1,000 feet below land surface) in the Okeechobee, Florida area. Groundwater samples were collected between 2018 and 2019 from a South Florida Water Management District (SFWMD) monitoring well installed at the Kissimmee River Aquifer Storage and Recovery (ASR) facility, which is located at the discharge point of the Kissimmee River into Lake ... |
Info |
Northern California 3.2 projections of coastal cliff retreat due to 21st century sea-level
This dataset contains projections of coastal cliff retreat and associated uncertainty across Northern California for future scenarios of sea-level rise (SLR) to include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, and 500 centimeters (cm) of SLR by the year 2100 and cover coastline from the Golden Gate Bridge to the California-Oregon state border. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations ... |
Info |
Projected groundwater emergence and shoaling along the Virginia, Georgia, and Florida coasts
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. Similar modeled data for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314. |
Info |
Projected groundwater head along the Virginia, Georgia, and Florida coasts
Seamless unconfined groundwater heads for U.S. coastal Virginia, Georgia, and Florida (Atlantic and Gulf coast south of Sarasota) groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of ... |
Info |
Projected water table depths along the Virginia, Georgia, and Florida coasts
To predict water table depths, seamless groundwater heads for unconfined coastal Virginia, Georgia, and Florida (Atlantic and Gulf coast south of Sarasota) groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic ... |
Info |
Satellite-derived shorelines for the U.S. Atlantic coast (1984-2021)
This dataset contains shoreline positions derived from available Landsat satellite imagery for five states (Delaware, Maryland, Viginia, Georgia, and Florida) along the U.S. Atlantic coast for the time period 1984 to 2021. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in KMZ format. Significant uncertainty is associated with the locations of shorelines in ... |
Info |
Nearshore water level, tide, and non-tidal residual future projections (2016-2050) for the U.S. Atlantic coast
A dataset of modeled nearshore water levels (WLs) was developed for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields. Water level outputs were extracted from the global grid at approximately 20 km resolution along the Atlantic coastline. These data were then ... |
Info |
Nearshore water level, tide, and non-tidal residual hindcasts (1979-2016) for the U.S. Atlantic coast
A dataset of modeled nearshore water levels (WLs) was developed for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields -. Water level outputs were extracted from the global grid at approximately 20 km resolution along the coastlines. These data were then statistically ... |
Info |
Projected groundwater emergence and shoaling along the North and South Carolina coasts
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. |
Info |
Projected groundwater head along the North and South Carolina coasts
Seamless unconfined groundwater heads for U.S. coastal North and South Carolina groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea ... |
Info |
Projected water table depths along the North and South Carolina coasts
To predict water table depths, seamless groundwater heads for unconfined coastal North and South Carolina groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for ... |
Info |
Satellite-derived shorelines for North Carolina and South Carolina (1984-2021)
This dataset contains shoreline positions derived from available Landsat satellite imagery for North Carolina and South Carolina for the time period of 1984 to 2021. Positions were determined using CoastSat (Vos and others, 2019a and 2019b), an open-source mapping toolbox, was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. To understand shoreline evolution in complex environments and operate long-term simulations illustrating potential shoreline positions in the next ... |
Info |
Nearshore water level, tide, and non-tidal residual future projections (2016-2050) for the North and South Carolina coasts
A dataset of modeled nearshore water levels (WLs) was developed for the North and South Carolina coastlines. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields. Water level outputs were extracted from the global grid at approximately 20 km resolution along the southeast Atlantic coastline. These data were then statistically downscaled using a ... |
Info |
Nearshore water level, tide, and non-tidal residual hindcasts (1979-2016) for the North and South Carolina coasts
A dataset of modeled nearshore water levels (WLs) was developed for the North and South Carolina coastlines. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields -. Water level outputs were extracted from the global grid at approximately 20 km resolution along the coastlines. These data were then statistically downscaled using a signal-specific ... |
Info |
Model input files for the lower Nooksack River and delta, western Washington State
This data set consists of physics-based Delft3D-Flexible Mesh hydrodynamic model input files that are used to simulate compound flood exposure of the lower Nooksack River and delta of western Washington State under existing and future conditions of anticipated climate and land-use change. The model enables assessment of the changing flood exposure associated with the cumulative impacts of expected sea-level rise, greater tidal inundation, more frequent storm surge effects, and higher winter stream floods ... |
Info |
Projections of compound floodwater depths for the lower Nooksack River and delta, western Washington State
Computed flood depths associated with the combined influence of sea level position, tides, storm surge, and streamflow under existing conditions and projected future higher sea level and peak stream runoff are provided for the lower (Reach 1) of the Nooksack River and delta in Whatcom County, western Washington State. The flood-depth projection data are provided in a series of raster geotiff files. Flood-depth projections were computed using a system of numerical models that accounted for projected changes ... |
Info |
Projected groundwater emergence and shoaling in coastal areas around Puget Sound, Washington
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. |
Info |
Projected groundwater head in coastal areas around Puget Sound, Washington
Seamless unconfined groundwater heads for coastal groundwater systems around Puget Sound (Washington State) were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was defined primarily by watershed boundaries. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea-level rise (SLR) scenarios (0, 0.25, 0.5, 1, 1.5, 2, 2 ... |
Info |
Projected water table depths in coastal areas around Puget Sound, Washington
To predict water table depths, seamless unconfined groundwater heads for coastal groundwater systems around Puget Sound (Washington State) were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was defined primarily by watershed boundaries. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea-level rise (SLR) ... |
Info |
CoSMoS Whatcom County model input files
This data set consists of physics-based XBeach and SFINCS hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) Tier 3 simulations. This data release is for Whatcom County in Washington State and presents the final tier 3 models used to produce output data that is then post-processed into final CoSMoS products. Example model input and configuration files are included for a single domain and SLR scenario, with the full modelling framework iterating on this process to simulate ... |
Info |
Projections of coastal flood velocities for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood velocities associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood velocities along the ... |
Info |
Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for the U.S. Atlantic Coast
This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps).Projections were made using the Coastal Storm Modeling System - Coastal One-line ... |
Info |
Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for North Carolina and South Carolina
This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps). Projections were made using the Coastal Storm Modeling System - Coastal One-line ... |
Info |
Projections of coastal flood hazards and flood potential for the U.S. Atlantic coast
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and southern Virginia). Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output ... |
Info |
Projections of coastal flood depths for the U.S. Atlantic coast
Projected depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and Virginia). Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the U.S. Atlantic ... |
Info |
Projections of coastal flood hazards and flood potential for North Carolina and South Carolina
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the ... |
Info |
Projections of coastal water depths for North Carolina and South Carolina
Projected water depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the ... |
Info |
Projections of wave heights for Whatcom County, Northwest Washington State coast (2015-2100)
Projected wave heights associated with compound coastal flood hazards for existing and future sea-level rise (SLR) and storm scenarios are shown for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting data are water levels of projected flood hazards along the Whatcom County coast due to sea level rise and ... |
Info |
Projections of coastal flood durations for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood duration associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood duration along the ... |
Info |
Projections of coastal flood extents for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood extents associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of shapefile files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood extents along the Whatcom ... |
Info |
Projections of coastal flood depths for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood depths associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood depths along the Whatcom ... |
Info |
Projections of coastal flood water levels for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood levels associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood levels along the Whatcom ... |
Info |
Satellite-derived shorelines for the U.S. Gulf Coast states of Texas, Louisiana, Mississippi, and Florida for the period 1984-2022, obtained using CoastSat
This dataset contains shoreline positions derived from available Landsat satellite imagery for four states (Texas, Louisiana, Mississippi, and Florida) along the U.S. Gulf coast for the time period 1984 to 2022. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in CSV format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the American Samoa’s most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated American Samoan Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Mariana Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands (ver. 1.1, September 2024)
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands' ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 ... |
Info |
Projected coastal flooding inundation depths for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flood depth GeoTIFFs based on sea-level rise (SLR) for the coast of the most populated American Samoa s most populated islands of Tutuila, Ofu-Olosega, and Ta'u. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected coastal flooding inundation depths for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flood depth GeoTIFFs based on sea-level rise for the coast of the most populated Mariana Islands of Guam and Saipan. Digital elevation models were used to extract sea-level rise flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios. |
Info |
Projected coastal flooding inundation depths for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flood depth GeoTIFFs based on potential future sea-level rise (SLR)for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected sea-level rise flooding inundation extents for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flooding extent polygons based on sea-level rise (SLR) water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Ta'u. Digital elevation models were used to predict SLR flooding extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected sea-level rise flooding inundation extents for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter in the Mariana Islands
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) rise water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Digital elevation models were used to predict SLR flooding extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR rise scenarios. |
Info |
Projected sea-level rise flooding inundation extents for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) water levels for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas along the coastlines at 10-m2 resolution and converted to polygon shapefiles of the extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projections of shoreline change for California due to 21st century sea-level rise
This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations across the state. Scenarios include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 and 500 ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS Southern California v3.0 Phase 2 projections of coastal cliff retreat due to 21st century sea-level rise
This dataset contains projections of coastal cliff-retreat rates and positions for future scenarios of sea-level rise (SLR). Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical and statistical models based on field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS) v.3.0 Phase 2 in Southern California. Details: Cliff ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 coastal squeeze projections
Projected coastal squeeze derived from CoSMoS Phase 2 shoreline change and cliff retreat projections. Projected coastal squeeze extents illustrate the available area between shoreline (mean high water; MHW) positions and man-made structures and barriers (referred to as non-erodible structures) or cliff-top retreat, as applicable, for a range of sea-level rise scenarios. The coastal squeeze polygons include results from the Coastal Storm Modeling System (CoSMoS) shoreline change (CoSMoS-COAST; Vitousek and ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 runup projections
Geographic extent of projected runup associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with ... |
Info |
CoSMoS Southern California v3.0 projections of shoreline change due to 21st century sea-level rise
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using CoSMoS-COAST, a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Details: Projections of shoreline position in Southern California are made for scenarios of 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 5.0 meters of sea-level rise by the year 2100. Four datasets are available for different ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
Shoreline change rates along the coast of California from 1998 to 2016
This dataset contains California shoreline change rates derived from mean high water (MHW) shorelines from 1998 (in Central and Southern California) and 2002 (in Northern California) to 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method ... |
Info |
Mean high water (MHW) shorelines along the coast of California used to calculated shoreline change from 1998 to 2016
This dataset contains mean high water (MHW) shorelines for sandy beaches along the coast of California for the years 1998/2002, 2015, and 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method. The smoothed contour line was then quality ... |
Info |
Shoreline change data along the coast of California from 2015 to 2016
This dataset contains shoreline change measurements for sandy beaches along the coast of California over the 2015/2016 El Nino winter season. Mean high water (MHW) shorelines were extracted from Light Detection and Ranging (LiDAR) digital elevation models from the fall of 2015 and the spring of 2016 using the ArcGIS smoothed contour method. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. ... |
Info |
Projected groundwater emergence and shoaling for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected groundwater head for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected water table depths for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Central California CoSMoS v3.1 projections of coastal cliff retreat due to 21st century sea-level rise
This dataset contains spatial projections of coastal cliff retreat (and associated uncertainty) for future scenarios of sea-level rise (SLR) in Central California. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS). Read metadata and references ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 100-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 1-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 20-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: average conditions in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
Central California CoSMoS v3.1 projections of shoreline change due to 21st century sea-level rise
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Read metadata carefully. Details: Projections of shoreline position in the Central Coast of California are made for scenarios of 25, 50, 75, 92, 100 ... |
Info |
hawaii_sea - Sea Level Hazard Intensity Level in the coastal zone of Hawaii, Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Hawaii, Hawaii |
Info |
kauai_sea - Sea Level Hazard Intensity Level in the coastal zone of Kauai, Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Kauai, Hawaii |
Info |
lanai_sea - Sea Level Hazard Intensity Level in the coastal zone of Lanai, Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Lanai, Hawaii |
Info |
maui_sea - Sea Level Hazard Intensity Level in the coastal zone of Maui, Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Maui, Hawaii |
Info |
molo_sea - Sea Level Hazard Intensity Level in the coastal zone of Molokai, Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Molokai, Hawaii |
Info |
oahu_sea - Sea Level Hazard Intensity Level in the coastal zone of Oahu, Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Oahu, Hawaii |
Info |
sand_sea - Sea Level Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii
Sea Level Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii |
Info |
Acquisition log maintained during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (PDFs of Excel spreadsheets)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ... |
Info |
1-meter backscatter imagery collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (GeoTIFF image)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
2-meter bathymetric data collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (bathymetry and depth-colored hillshade relief GeoTIFFs)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Acquisition log maintained in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (PDF of scanned spreadsheet)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Acquisition log maintained during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (Excel spreadsheet)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ... |
Info |
Collections inventory for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Samples Repository (ver. 2.0, September 2023)
Since 2002, the Woods Hole Coastal and Marine Science Center’s Samples Repository supports research by providing secure storage for geological, biological, and geochemical samples; maintaining organization and an active inventory of these sample collections; and providing access to these collections for study and reuse. This collections inventory has been compiled, organized, and released as a searchable database to provide researchers and the general public with means to discover and request scientific ... |
Info |
Eelgrass and substrate characteristics in Bellingham Bay, Washington, July 2019
Eelgrass (Zostera marina) characteristics, sediment grain size distributions, sediment total organic carbon contents (TOC), carbon isotope ratios of sediment organic matter, and total carbon to total nitrogen ratios were measured at four lower intertidal sites in Bellingham Bay, Washington, July 2-5, 2019. |
Info |
Substrate properties for invertebrate comparisons in Bellingham Bay, Washington, July 2019 and July-August 2020
Sediment grain-size distributions and total organic carbon contents were measured at four intertidal sites and three subtidal sites along the urban waterfront (east shore) of Bellingham Bay, Washington, July 3-11, 2019 and June 6-August 31, 2020. Intertidal substrate was sampled in eelgrass beds, and subtidal substrate was sampled inside and outside of the deep edge of eelgrass beds. |
Info |
Data and calculations to support the study of the sea-air flux of methane and carbon dioxide on the West Spitsbergen margin in June 2014
A critical question for assessing global greenhouse gas budgets is how much of the methane that escapes from seafloor cold seep sites to the overlying water column eventually crosses the sea-air interface and reaches the atmosphere. The issue is particularly important in Arctic Ocean waters since rapid warming there increases the likelihood that gas hydrate--an ice-like form of methane and water stable at particular pressure and temperature conditions within marine sediments--will break down and release its ... |
Info |
Comparison of methane concentration and stable carbon isotope data for natural samples analyzed by discrete sample introduction module - cavity ring down spectroscopy (DSIM-CRDS) and traditional methods
A discrete sample introduction module (DSIM) was developed and interfaced to a cavity ring-down spectrometer to enable measurements of methane and CO2 concentrations and 13C values with a commercially available cavity ring-down spectrometer (CRDS). The DSIM-CRDS system permits the analysis of limited volume (5 - 100-ml) samples ranging six orders-of-magnitude from 100% analyte to the lower limit of instrument detection (2 ppm). We demonstrate system performance for methane by comparing concentrations and ... |
Info |
Geographic data defining watersheds less than 45 square kilometers burned in all California wildfires greater than 100 square kilometers, 1984—2021
This table contains geographic information defining watersheds that were burned in large wildfires (greater than 100 square kilometers) that occurred in California or California-draining regions (i.e., upper Klamath watershed) between the years 1984 and 2021. Each wildfire was broken into tens to thousands of small watersheds, and each row of this table contains geographic information defining a single watershed. |
Info |
Postfire erosion modeling results using the Water Erosion Prediction Project (WEPP) model for all large wildfires in California, 1984–2021
This is a shapefile containing polygons of watersheds that were burned in wildfires that occurred in California between 1984 and 2021. The Water Erosion Prediction Project (WEPP) model for postfire erosion was run on all watersheds for the first year following wildfire and the results of this modeling effort are included as attributes of each watershed polygon. |
Info |
Model estimates of the probability and volume of debris flows that may be produced by a storm following recent wildfire; re-release of ten wildfires across California, 1997—2015
These data show model estimates of debris flow likelihood and volume that may be produced by a storm in a recently burned landscape. The scientific methods used by the U.S. Geological Survey Emergency Assessment of Post-Fire Debris-Flow Hazards were changed following 2015, and these shapefiles are a re-release of ten fires that occurred between 1997 and 2015 fires, using the updated methods. These ten fires were re-run to provide estimates of debris flow volumes as post-fire debris flows were documented but ... |
Info |
Summary by wildfire of all postfire erosion modeled estimates and field-based observation for large fires 1984—2021
These data show all the postfire erosion results affiliated with this data release summed by wildfire and attached to a polygon of each fire perimeter, as defined by Monitoring Trends in Burn Severity (MTBS). The results are shown as attributes for each polygon of wildfire perimeter. Some of the original MTBS data (name, ignition date, and ID) were preserved to allow for joining to other MTBS data. Results include WEPP modeling results of hillslope and channel erosion, a sum of postfire debris flow modeling ... |
Info |
Postfire debris-flow volumes and their associated observation, location, and volume sources
This table contains measured and modeled postfire debris flow volumes alongside the associated sources for debris flow documentation, locations, and volumes. We conducted a search of scientific literature and news media reports to find documentation of debris flows that may have followed all wildfires greater than 100 square kilometers that occurred between 1984 and 2021 in California. The wildfires listed are all the fires we found that had documented postfire debris flows. Some fires had field ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ... |
Info |
HLY1002_CTD_casts
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1002_Healy_Continuous
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1002_Healy_Discrete
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1102_CTD_casts
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1102_Healy_Continuous
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1102_Healy_Discrete
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11CEV02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11CEV01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ... |
Info |
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, ... |
Info |
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
HLY1002_Averaged
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2010: Discrete Lab data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1001_Averaged
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2011: Discrete Underway data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2011: Discrete Lab data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2012: Discrete Underway Laboratory data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent; however, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon ... |
Info |
Olowalu chronology and geochemistry time-series, West Maui
Chronology and time-series geochemistry data of a coral core collected from Olowalu, West Maui, Hawaii. The chronology is based on density banding, radiocarbon bomb-curve, and uranium thorium dating techniques. The geochemistry time-series data contains major and minor elements over the length of the coral life span, as measured from laser ablation inductively coupled mass spectrometry (LA-ICP-MS). |
Info |
Geomorphic habitat units derived from 2009 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 11 September 2009 1 meter resolution NAIP aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (17 September 2009) for areas < MHHW and aerial lidar surveys (4-6 April 2009) for elevations > MHHW. |
Info |
Geomorphic habitat units derived from 2011 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 03 September 2011* 0.3 meter resolution Microsoft/Digital Globe aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (25 August 2011) for areas < MHHW and aerial lidar surveys (13-15 April 2012) for elevations > MHHW. *Image date of 3-Sep-11 corrected in metadata. During product generation the imagery date was believed to be 8-25-2011, as reported by ... |
Info |
Geomorphic habitat units derived from 2012 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 30 August 2012 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (28 August 2012) for areas < MHHW and aerial lidar surveys (17 October 2012) for elevations > MHHW. |
Info |
Geomorphic habitat units derived from 2013 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 26 August 2013 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (16 September 2013) for areas < MHHW and aerial lidar surveys (17 October 2012) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (19 September 2013) for elevations > MHHW. |
Info |
Geomorphic habitat units derived from 2014 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 28 August 2014 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (5-8 September 2014) for areas < MHHW and aerial lidar surveys (7 November 2014) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (30 September 2014) for elevations > MHHW. |
Info |
Vegetation habitat units derived from 2009 aerial imagery and field data for the Elwha River estuary, Washington
Estuary vegetation cover delineated from 11 September 2009 1-meter-resolution NAIP aerial imagery at a scale of 1:1500. |
Info |
Vegetation habitat units derived from 2011 aerial imagery and field data for the Elwha River estuary, Washington
Estuary vegetation cover delineated from 3 September 2011* 0.3-meter-resolution aerial imagery (Microsoft/Digital Globe) at a scale of 1:1500. *Image date of 3-Sep corrected in metadata. During product generation the imagery date was believed to be 8-25-2011, as reported by DigitalGlobe reseller. |
Info |
Vegetation habitat units derived from 2012 aerial imagery and field data for the Elwha River estuary, Washington
Estuary vegetation cover delineated from 30 August 2012 0.15-meter-resolution NPS Elwha PlaneCam aerial imagery at a scale of 1:1500. |
Info |
Vegetation habitat units derived from 2013 aerial imagery and field data for the Elwha River estuary, Washington
Estuary vegetation cover delineated from 26 August 2013 0.15-meter-resolution NPS Elwha PlaneCam aerial imagery at a scale of 1:1500. |
Info |
Vegetation habitat units derived from 2014 aerial imagery and field data for the Elwha River estuary, Washington
Estuary vegetation cover delineated from 28 August 2014 0.15-meter-resolution NPS Elwha PlaneCam aerial imagery at a scale of 1:1500. |
Info |
Coral growth parameters, Kahekili, west Maui
Surface runoff and submarine groundwater discharge in particular are known vectors to the coastal ocean of elevated nutrients and contaminants leading to eutrophication, algal overgrowth, and coral disease. Freshwater discharging directly from submarine groundwater vents off of Kahekili Beach Park, Kaanapali, in West Maui contains elevated nutrient concentrations and lower pH values. Coral cores were collected in July 2013 from the shallow reef at Kahekili in Kaanapali, West Maui, Hawaii from ... |
Info |
Seawater carbonate chemistry, Kahekili, west Maui
Time-series of seawater carbonate chemistry variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, and dissolved inorganic carbon from sites along Kahekili Beach Park, west Maui near submarine groundwater seeps and living coral reefs. Samples for seawater were collected by pumping bottom water from the seafloor using a peristaltic pump and collecting discrete water samples every 4-hrs over a 6-day period. |
Info |
Sediment grain size and digital image calibration parameters from the mouth of the Columbia River, Oregon and Washington, 2014
This dataset includes 63 still images extracted from digital video imagery of sediment grab samples, along with laboratory grain size analysis of the sediment grab samples, taken from the mouth of the Columbia River, OR and WA, USA. Digital video was collected in September 2014 in the mouth of the Columbia River, USA, as part of the U.S. Geological Survey Coastal and Marine Geology Program contribution to the Office of Naval Research funded River and Inlets Dynamics experiment (RIVET II). Still images were ... |
Info |
Digital seafloor images and sediment grain size from the mouth of the Columbia River, Oregon and Washington, 2014
This dataset includes 2,523 still images extracted from geo-referenced digital video imagery of the seafloor at the mouth of the Columbia River, OR and WA, USA, along with grain size analysis of the surface sediment. Underwater digital video was collected in September 2014 in the mouth of the Columbia River, USA, as part of the U.S. Geological Survey Coastal and Marine Geology Program contribution to the Office of Naval Research funded River and Inlets Dynamics experiment (RIVET II). Still images were ... |
Info |
Turbidity data from the Carmel River, central California, 2014 to 2017
This data provides river turbidity measurements collected on the Carmel River, CA. Turbidity was measured to study any changes in the Carmel River’s sediment loads following the removal of the San Clemente Dam. The USGS-run DTS-12 turbidity sensor was deployed above the Sleepy Hollow Weir on the Carmel River, CA (instrument was located at 36.445250 degrees North, 121.710494 degrees West). Deployment began on December 9, 2014. After June 16, 2016, the instrument was removed for calibration. A new ... |
Info |
The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
The half interpercentile range of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_hIPR, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
The median of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_median.shp, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
Recurrence interval of sediment mobility at select points in the Gulf of Maine south into the Middle Atlantic Bight for May, 2010 - May, 2011 (GMAINE_mobile_freq, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Gulf of Maine south into the Middle Atlantic Bight (GMAINE_mobile_perc.SHP, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
The 95th percentile of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_95th_perc, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
The half-interpercentile range of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_hIPR, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
The median of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_median, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
Recurrence interval of sediment mobility at select points in the Gulf of Mexico for May 2010 to May 2011 (GMEX_mobile_freq, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
Percentage of time sediment is mobile for May 2010 to May 2011 at select points in the Gulf of Mexico (GMEX_mobile_perc, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
95th percentile of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_95th_perc.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_hIPR.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Median of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_median.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Recurrence interval of sediment mobility at select points in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_mobile_freq_v1_1.SHP, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Middle Atlantic Bight (MAB_mobile_perc.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated 95th percentile of wave-current bottom shear stress for the South Atlantic Bight for May 2010 to May 2011 (SAB_95th_perc, polygon shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_hIPR.shp, polygon shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated median of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_median, polygon shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated recurrence interval of sediment mobility at select points in the South Atlantic Bight for May 2010 to May 2011 (SAB_mobile_freq, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated percentage of time sediment is mobile for May 2010 to May 2011 at select points in the South Atlantic Bight (SAB_mobile_perc, point shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Biomarker analysis of cold seeps along the United States Atlantic Margin
Results of lipid biomarker concentration and compound specific isotopes analyzed from authigenic carbonates and surrounding sediment collected from Baltimore and Norfolk seep fields along the United States Atlantic Margin are presented in csv format. Samples were collected by the U.S. Geological Survey and Duke University between 2012 and 2015 using remotely operated vehicles (ROVs). Geochemical analysis was performed using gas chromatography (GC) and GC-combustion isotope ratio mass spectrometry (GC-C-IRMS ... |
Info |
Inorganic compositional data for fine-grained Puget Sound sediment along the Burlington Northern Santa Fe rail line, September 2015
Nearshore surface sediment was collected with a petit ponar grab sampler between April 22 and September 17, 2015, at five sites in Puget Sound, Washington. Four sites were adjacent to the Burlington Northern Santa Fe rail line in urban and non-urban areas, and one site was in an urban area that was not adjacent to the rail line. Total and near-total major, minor, trace, and rare earth element contents of the <0.063 mm sediment fraction were determined by inductively coupled plasma atomic emission ... |
Info |
Geochemistry of sediment and organic matter in drainages burned by the Altas and Nuns wildfires in October 2017 and of nearshore seabed sediment in north San Francisco Bay from March to April 2018
Fine-grained sediment was collected from the banks of Napa River, Sonoma Creek, and tributaries in March 2018 and from shallow nearshore areas of the northern reach of San Francisco Bay in April 2018. Bulk sediment was dated using activities of short-lived cosmogenic radionuclides (beryllium-7, cesium-137, and lead-210). Contents of potentially toxic metals and source-rock-indicative elements, including rare earth elements, were quantified in the fine fraction of sediment (particles less than 0.063 mm ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Locations of convergences in the maximum alongshore current
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Locations of decelerations in the direction of flow in the maximum alongshore current
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of wave- and current-induced shear stress to critical values for oil-sand ball and sediment mobilization
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: wave direction
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Significant wave height
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: peak wave period
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Scenarios_Grid
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Tidal_Grid
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of the wave- and current-induced shear stress to the critical value for oil-tar balls and sediment mobilization over a tidal cycle
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of the wave- and current-induced shear stress to the critical value for oil-tar balls and sediment mobilization weighted by probability of wave scenario occurrence
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation
Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ... |
Info |
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls of varying sizes weighted by probability of wave scenario occurrence
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ... |
Info |
Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site
This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been numbered to indicate combinations of seafloor hardness, ruggedness and depth associated with biotopes derived by analysis of video data as described in the accompanying Open-File Report (Cochrane and others, 2017). The map was created using video and multibeam echosounder bathymetry and backscatter data collected in 2014 and processed in 2015 ... |
Info |
Sediment thickness from seismic reflection data collected offshore of Arcata, California
This 100-m-resolution sediment thickness data raster for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seismic data were collected by the USGS in 2009 using a mini-sparker seismic systems installed on the Humboldt State University R/V Coral Sea. The data were processed by the USGS into segy format files. The data are available as a georeferenced TIFF image. |
Info |
Depth to transition--Santa Barbara Channel, California
This part of DS 781 presents data for the depth-to-transition (the depth to the bedrock at the Last Glacial Maximum) map of the Santa Barbara Channel, California, region. The raster data file is included in "DepthToTransition_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial ... |
Info |
Isopachs--Santa Barbara Channel, California
This part of DS 781 presents data for the isopachs for the Santa Barbara Channel, California, region. The vector data file is included in "Isopachs_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters from the Offshore of Refugio Beach map area to the ... |
Info |
Sediment thickness--Santa Barbara Channel, California
This part of DS 781 presents data for the sediment-thickness map of the Santa Barbara Channel, California, region. The raster data file is included in "SedimentThickness_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness atop the bedrock at the Last Glacial Maximum horizon for the seafloor within the 3-nautical-mile limit of ... |
Info |