Environment

used for issues related to the interactions of humans or other organisms with their physical and biological surroundings.
Subtopics:
Carbon cycle (1 items)
Climate change (278 items)
Habitats (74 items)
Pollution (14 items)

468 results listed by similarity [list alphabetically]
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ...

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ...

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ...

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ...

Info
Water level and velocity measurements from the 2012 University of Western Australia Fringing Reef Experiment (UWAFRE)

This data release contains water level and velocity measurements from wave runup experiments performed in a laboratory flume setting. Wave-driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef-fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms. The 2012 University of Western Australia Fringing Reef ...

Info
Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands

Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project ...

Info
Model parameter input files to compare locations of coral reef restoration on different reef profiles to reduce coastal flooding

This dataset consists of physics-based XBeach Non-hydrostatic hydrodynamic models input files used to study how coral reef restoration affects waves and wave-driven water levels over coral reefs, and the resulting wave-driven runup on the adjacent shoreline. Coral reefs are effective natural coastal flood barriers that protect adjacent communities. Coral degradation compromises the coastal protection value of reefs while also reducing their other ecosystem services, making them a target for restoration. ...

Info
HyCReWW database: A hybrid coral reef wave and water level metamodel

We developed the HyCReWW metamodel to predict wave run-up under a wide range of coral reef morphometric and offshore forcing characteristics. Due to the complexity and high dimensionality of the problem, we assumed an idealized one-dimensional reef profile, characterized by seven primary parameters. XBeach Non-Hydrostatic was chosen to create the synthetic dataset and Radial Basis Functions implemented in Matlab were chosen for interpolation. Results demonstrate the applicability of the metamodel to obtain ...

Info
BEWARE database: A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts

A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on ...

Info
Projected flood water depths on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands

Projected future wave-driven flooding depths on Roi-Namur Island on Kwajalein Atoll in the Republic of the Marshall Islands for a range of climate-change scenarios. This study utilized field data to calibrate oceanographic and hydrogeologic models, which were then used with climate-change and sea-level rise projections to explore the effects of sea-level rise and wave-driven flooding on atoll islands and their freshwater resources. The overall objective of this effort, due to the large uncertainty in ...

Info
Model parameter input files to compare the influence of channels in fringing coral reefs on alongshore variations in wave-driven runup along the shoreline

An extensive set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate the influence of shore-normal reef channels on flooding along fringing reef-lined coasts, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Storlazzi, C.D., Rey, A.E., and van Dongeren, A.R., 2022, ...

Info
Coral reef profiles for wave-runup prediction

This data release includes representative cluster profiles (RCPs) from a large (>24,000) selection of coral reef topobathymetric cross-shore profiles (Scott and others, 2020). We used statistics, machine learning, and numerical modelling to develop the set of RCPs, which can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the data were reduced by clustering cross-shore profiles based on morphology and hydrodynamic ...

Info
Modeled effects of depth and semidiurnal temperature fluctuations on predictions of year that coral reef locations reach annual severe bleaching for various global climate model projections

Using global climate model projections of sea-surface temperature at coral reef sites, we modeled the effects of depth and exposure to semidiurnal temperature fluctuations to examine how these effects may alter the projected year of annual severe bleaching for coral reef sites globally. Here we present the first global maps of the effects these processes have on bleaching projections for three IPCC-AR5 emissions scenarios.

Info
Physics-based numerical model simulations of wave propagation over and around theoretical atoll and island morphologies for sea-level rise scenarios

Schematic atoll models with varying theoretical morphologies were used to evaluate the relative control of individual morphological parameters on alongshore transport gradients. Here we present physics-based numerical SWAN model results of incident wave transformations for a range of atoll and island morphologies and sea-level rise scenarios. Model results are presented in NetCDF format, accompanied by a README text file that lists the parameters used in each model run. These data accompany the following ...

Info
Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts

This data release includes the XBeach input data files used to evaluate the importance of explicitly modeling sea-swell waves for runup. This was examined using a 2D XBeach short wave-averaged (surfbeat, XB-SB) and a wave-resolving (non-hydrostatic, XB-NH) model of Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands. Results show that explicitly modelling the sea-swell component (using XB-NH) provides a better approximation of the observed runup than XB-SB (which only models the time ...

Info
Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018

This portion of the data release presents raw aerial imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted in a nadir orientation using a fixed mount. Before each flight, the camera’s digital ISO, aperture, and shutter speed were adjusted for ambient light ...

Info
Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018

This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) ...

Info
Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018

This portion of the data release presents a high-resolution orthomosaic image of the coral reef off Waiakane, Molokai, Hawaii. The orthomosaic has a resolution of 2.5 centimeters (cm) per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 24 June 2018. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre ...

Info
Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018

This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted ...

Info
Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018

This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a ...

Info
Model parameter input files to study three-dimensional flow over coral reef spur-and-groove morphology

This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning ...

Info
Habitat--Offshore of Bodega Head, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bodega Head map area, California. The vector data file is included in "Habitat_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ...

Info
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ...

Info
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ...

Info
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution.

Info
Shaded-relief image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic, resampled to 1-meter resolution, and merged with lidar bathymetry data to produce the shaded-relief image.

Info
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Habitat--Offshore of Bolinas, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bolinas map area, California. The vector data file is included in "Habitat_Bolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video ...

Info
Habitat--Offshore of Carpinteria, California

This part of SIM 3261 presents data for the habitat map of the seafloor (see sheet 7, SIM 3261) of the Offshore of Carpinteria map area, California. The vector data file is included in "Habitat_OffshoreCarpinteria.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and ...

Info
Habitat--Offshore of Coal Oil Point, California

This part of SIM 3302 presents the habitat map of the seafloor (see sheet 7) of Offshore of Coal Oil Point, California (vector data file is included in "Habitat_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html). Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using ...

Info
Habitat--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the habitat map of the seafloor of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Habitat_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ...

Info
Habitat--Offshore of Fort Ross, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Fort Ross map area, California. The polygon shapefile is included in "Habitat_OffshoreFortRoss.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using ...

Info
Habitat--Offshore of Half Moon Bay, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Half Moon Bay map area, California. The polygon shapefile is included in "Habitat_OffshoreHalfMoonBay.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. Using multibeam echosounder (MBES) bathymetry and backscatter data (see Bathymetry; Backscatter A [8101]; and Backscatter B [7125]--Offshore Half Moon Bay, California, DS 781), potential marine benthic ...

Info
Habitat--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the habitat map of the seafloor of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Habitat_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ...

Info
Habitat--Offshore of Pacifica, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Pacifica map area, California. The vector data file is included in "Habitat_OffshorePacifica.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using ...

Info
Habitat--Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Point Reyes map area, California. The vector data file is included in "Habitat_PointReyes.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using ...

Info
Habitat--Offshore of Refugio Beach, California

This part of SIM 3319 presents the habitat map of the seafloor (see sheet 7) offshore of Refugio Beach, California (vector data file is included in "Habitat_RefugioBeach.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html). Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater ...

Info
Habitat--Offshore of Salt Point, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Salt Point map area, California. The vector data file is included in "Habitat_OffshoreSaltPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using ...

Info
Habitat--Offshore of San Francisco, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of San Francisco map area, California. The vector data file is included in "Habitat_SanFrancisco.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using ...

Info
Habitat--Offshore of San Gregorio, California

This part of SIM 3306 presents data for the habitat map of the seafloor (see sheet 7, SIM 3306) of the Offshore of San Gregorio map area, California. The vector data file is included in "Habitat_OffshoreSanGregorio.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and ...

Info
Habitat--Offshore of Santa Barbara, California

This part of SIM 3281 presents data for the habitat map of the seafloor (see sheet 7, SIM 3281) of the Offshore of Santa Barbara map area, California. The vector data file is included in "Habitat_OffshoreSantaBarbara.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and ...

Info
Habitat--Offshore of Tomales Point, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Tomales Point map area, California. The polygon shapefile is included in "Habitat_OffshoreTomalesPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground ...

Info
Habitat--Offshore of Ventura, California

This part of SIM 3254 presents data for the habitat map of the seafloor (see sheet 7, SIM 3254) of the Offshore of Ventura map area, California. The vector data file is included in "Habitat_OffshoreVentura.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground ...

Info
Habitat--Offshore of Monterey, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Monterey map area, California. The vector data file is included in "Habitat_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds. ...

Info
Habitat--Offshore Pigeon Point, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Pigeon Point map area, California. The vector data file is included in "Habitat_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., ...

Info
Habitat--Offshore Scott Creek, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in "Habitat_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ...

Info
Habitat--Offshore of Aptos, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Aptos map area, California. The vector data file is included in "Habitat_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ...

Info
Habitat--Offshore Santa Cruz, California

This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Santa Cruz map area, California. The vector data file is included in "Habitat_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ...

Info
Olowalu chronology and geochemistry time-series, West Maui

Chronology and time-series geochemistry data of a coral core collected from Olowalu, West Maui, Hawaii. The chronology is based on density banding, radiocarbon bomb-curve, and uranium thorium dating techniques. The geochemistry time-series data contains major and minor elements over the length of the coral life span, as measured from laser ablation inductively coupled mass spectrometry (LA-ICP-MS).

Info
Geomorphic habitat units derived from 2009 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 11 September 2009 1 meter resolution NAIP aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (17 September 2009) for areas < MHHW and aerial lidar surveys (4-6 April 2009) for elevations > MHHW.

Info
Geomorphic habitat units derived from 2011 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 03 September 2011* 0.3 meter resolution Microsoft/Digital Globe aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (25 August 2011) for areas < MHHW and aerial lidar surveys (13-15 April 2012) for elevations > MHHW. *Image date of 3-Sep-11 corrected in metadata. During product generation the imagery date was believed to be 8-25-2011, as reported by ...

Info
Geomorphic habitat units derived from 2012 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 30 August 2012 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (28 August 2012) for areas < MHHW and aerial lidar surveys (17 October 2012) for elevations > MHHW.

Info
Geomorphic habitat units derived from 2013 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 26 August 2013 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (16 September 2013) for areas < MHHW and aerial lidar surveys (17 October 2012) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (19 September 2013) for elevations > MHHW.

Info
Geomorphic habitat units derived from 2014 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 28 August 2014 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (5-8 September 2014) for areas < MHHW and aerial lidar surveys (7 November 2014) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (30 September 2014) for elevations > MHHW.

Info
Vegetation habitat units derived from 2009 aerial imagery and field data for the Elwha River estuary, Washington

Estuary vegetation cover delineated from 11 September 2009 1-meter-resolution NAIP aerial imagery at a scale of 1:1500.

Info
Vegetation habitat units derived from 2011 aerial imagery and field data for the Elwha River estuary, Washington

Estuary vegetation cover delineated from 3 September 2011* 0.3-meter-resolution aerial imagery (Microsoft/Digital Globe) at a scale of 1:1500. *Image date of 3-Sep corrected in metadata. During product generation the imagery date was believed to be 8-25-2011, as reported by DigitalGlobe reseller.

Info
Vegetation habitat units derived from 2012 aerial imagery and field data for the Elwha River estuary, Washington

Estuary vegetation cover delineated from 30 August 2012 0.15-meter-resolution NPS Elwha PlaneCam aerial imagery at a scale of 1:1500.

Info
Vegetation habitat units derived from 2013 aerial imagery and field data for the Elwha River estuary, Washington

Estuary vegetation cover delineated from 26 August 2013 0.15-meter-resolution NPS Elwha PlaneCam aerial imagery at a scale of 1:1500.

Info
Vegetation habitat units derived from 2014 aerial imagery and field data for the Elwha River estuary, Washington

Estuary vegetation cover delineated from 28 August 2014 0.15-meter-resolution NPS Elwha PlaneCam aerial imagery at a scale of 1:1500.

Info
Coral growth parameters, Kahekili, west Maui

Surface runoff and submarine groundwater discharge in particular are known vectors to the coastal ocean of elevated nutrients and contaminants leading to eutrophication, algal overgrowth, and coral disease. Freshwater discharging directly from submarine groundwater vents off of Kahekili Beach Park, Kaanapali, in West Maui contains elevated nutrient concentrations and lower pH values. Coral cores were collected in July 2013 from the shallow reef at Kahekili in Kaanapali, West Maui, Hawaii from ...

Info
Seawater carbonate chemistry, Kahekili, west Maui

Time-series of seawater carbonate chemistry variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, and dissolved inorganic carbon from sites along Kahekili Beach Park, west Maui near submarine groundwater seeps and living coral reefs. Samples for seawater were collected by pumping bottom water from the seafloor using a peristaltic pump and collecting discrete water samples every 4-hrs over a 6-day period.

Info
Sediment grain size and digital image calibration parameters from the mouth of the Columbia River, Oregon and Washington, 2014

This dataset includes 63 still images extracted from digital video imagery of sediment grab samples, along with laboratory grain size analysis of the sediment grab samples, taken from the mouth of the Columbia River, OR and WA, USA. Digital video was collected in September 2014 in the mouth of the Columbia River, USA, as part of the U.S. Geological Survey Coastal and Marine Geology Program contribution to the Office of Naval Research funded River and Inlets Dynamics experiment (RIVET II). Still images were ...

Info
Digital seafloor images and sediment grain size from the mouth of the Columbia River, Oregon and Washington, 2014

This dataset includes 2,523 still images extracted from geo-referenced digital video imagery of the seafloor at the mouth of the Columbia River, OR and WA, USA, along with grain size analysis of the surface sediment. Underwater digital video was collected in September 2014 in the mouth of the Columbia River, USA, as part of the U.S. Geological Survey Coastal and Marine Geology Program contribution to the Office of Naval Research funded River and Inlets Dynamics experiment (RIVET II). Still images were ...

Info
Sediment trap and water column chemistry, Baltimore Canyon, U.S. Mid-Atlantic Bight

Time-series of sediment chemistry, including organic biomarker composition and bulk inorganic geochemical analytes, from samples collected over a one-year period in a sediment trap. The sediment traps were deployed at a depth between 603 m to 1318 m, and they were programmed to rotate a 250 mL sample bottle at 30 d intervals, delivering 12 samples during the 1-year deployment between August 2012 and June 2013. In addition, dissolved water column nutrient concentrations and water column trace element ...

Info
Turbidity data from the Carmel River, central California, 2014 to 2017

This data provides river turbidity measurements collected on the Carmel River, CA. Turbidity was measured to study any changes in the Carmel River’s sediment loads following the removal of the San Clemente Dam. The USGS-run DTS-12 turbidity sensor was deployed above the Sleepy Hollow Weir on the Carmel River, CA (instrument was located at 36.445250 degrees North, 121.710494 degrees West). Deployment began on December 9, 2014. After June 16, 2016, the instrument was removed for calibration. A new ...

Info
The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ...

Info
The half interpercentile range of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_hIPR, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ...

Info
The median of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_median.shp, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ...

Info
Recurrence interval of sediment mobility at select points in the Gulf of Maine south into the Middle Atlantic Bight for May, 2010 - May, 2011 (GMAINE_mobile_freq, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ...

Info
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Gulf of Maine south into the Middle Atlantic Bight (GMAINE_mobile_perc.SHP, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ...

Info
The 95th percentile of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_95th_perc, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ...

Info
The half-interpercentile range of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_hIPR, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ...

Info
The median of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_median, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ...

Info
Recurrence interval of sediment mobility at select points in the Gulf of Mexico for May 2010 to May 2011 (GMEX_mobile_freq, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ...

Info
Percentage of time sediment is mobile for May 2010 to May 2011 at select points in the Gulf of Mexico (GMEX_mobile_perc, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ...

Info
95th percentile of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_95th_perc.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
Half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_hIPR.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
Median of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_median.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
Recurrence interval of sediment mobility at select points in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_mobile_freq_v1_1.SHP, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Middle Atlantic Bight (MAB_mobile_perc.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
U.S. Geological Survey calculated 95th percentile of wave-current bottom shear stress for the South Atlantic Bight for May 2010 to May 2011 (SAB_95th_perc, polygon shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
U.S. Geological Survey calculated half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_hIPR.shp, polygon shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
U.S. Geological Survey calculated median of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_median, polygon shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
U.S. Geological Survey calculated recurrence interval of sediment mobility at select points in the South Atlantic Bight for May 2010 to May 2011 (SAB_mobile_freq, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
U.S. Geological Survey calculated percentage of time sediment is mobile for May 2010 to May 2011 at select points in the South Atlantic Bight (SAB_mobile_perc, point shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ...

Info
Daily sediment loads during and after dam removal in the Elwha River, Washington, 2011 to 2016

Daily values of discharge and sediment loads were measured and estimated at U.S. Geological Survey gaging station 12046260, on the Elwha River at the diversion near Port Angeles, Washington. Daily data are reported from September 15, 2011 to September 30, 2016. Specific data include (1) date; (2) discharge; (3) suspended-sediment concentration and one standard-deviation bounds; (4) percentage of fine-grained particles (silts and clays) in suspension; (5) loads of total suspended-sediment, fine-grained ...

Info
Monthly bedload estimates, Elwha River, Washington, October 2015 to September 2016

Bedload sediment transport was calculated on the Elwha River, Washington to measure the amount of sediment transported along the riverbed during the 2016 water year. Bedload was measured using the Elwha bedload impact plate system (Hilldale and others, 2015). Physical bedload sampling by the U.S. Bureau of Reclamation for system calibration took place during November, 2012; March, May, and June 2013; and April 2014 at the Diversion Weir gauge (Magirl and others, 2015). Early in water year 2016 (year 5) the ...

Info
Orthomosaic images of the middle and lower Elwha River, Washington, 2012 to 2017

This dataset presents 28 georeferenced orthomosaic images of the middle and lower reaches of the Elwha River. Each mosaic image was created by stitching together thousands of individual photographs that were matched based on numerous unique tie points shared by the photographs. The individual photographs were taken by a plane-mounted camera during multiple flights over the study area spanning 2012 to 2017. Because each mosaic is orthogonal to the earth's surface and is georeferenced to real-world ...

Info
Digital elevation models (DEMs) of the lower Elwha River, Washington, water year 2013 to 2016

Digital elevation models (DEMs) of the lower Elwha River, Washington, were created by synthesizing lidar and PlaneCam Structure-from-Motion (SfM) data. Lidar and still digital photographs were collected by airplane during surveys from 2012 to 2016. The digital photographs were used to create a SfM digital surface model. Each DEM represents the ending conditions for that water year (for example, the 2013 DEM represents conditions at approximately September 30, 2013). The final DEMs, presented here, were ...

Info
Elevations of the Elwha and Mills dams, Elwha River, Washington, 2008 to 2013

This dataset presents elevation measurements of two dams on the Elwha River, Washington, during their removal processes from 2008 to 2013. Elevation measurements of the Elwha Dam were taken from October 2008 to March 2012. Elevation measurements of the Glines Canyon dam, which was further upstream than the Elwha Dam, were taken from October 2010 to October 2013. The measurements were by the U.S. Bureau of Reclamation as part of a study investigating the river channel's morphological responses to dam removal ...

Info
Upstream sediment contributions to Lake Mills on the Elwha River, Washington, 1926 to 2016

Sediment inputs to Lake Mills, on the Elwha River, Washington, were measured from 1927 to 2016. These measurements represent the annual total sediment load, in tonnes per year, that were input into Lake Mills and partially trapped by Glines Canyon dam. The sediment was allowed to erode and be transported down-river by the removal of the Glines Canyon and Elwha dams during 2011 to 2014. The measurements were taken as part of a study investigating the river channel's morphological responses to the removal of ...

Info
Streamgage measurements, Elwha River, Washington, 2011 to 2016

Streamgage levels on the Elwha River were measured from 2011 to 2016. These measurements show the height of the river's water surface, both in meters relative to the stream bed, as well as in meters relative to vertical geographic coordinates. Measurements were collected using a Global Water WL16 battery-operated vented water level logger in a hardened casing. The instrument was installed on October 17, 2011 on the left bank of the Elwha River at a power line crossing above the Elwha Surface Water Intake ...

Info
Suspended sediment concentration data in the Elwha River, Washington, September 2011 to September 2016

This data release provides 15-minute data of suspended-sediment concentration and fine (less than 0.0625 mm) suspended-sediment concentration during the removal of 2 large dams on the Elwha River from September 2011 to September 2016. Data are derived from regression relations with turbidity at the USGS gaging station Elwha River at the Diversion (no.12046260).

Info
Grain size data from the Carmel River, central California, 2013 to 2021 (ver. 2.0, March 2022)

Pebble-count data were collected during summer surveys (2013, 2015, 2016, 2017, 2018, 2019, 2020, and 2021) at ten sites along the Carmel River, California. Grain-size measurements were made at four to six transects per site using a 0.5 by 0.5 m sampling frame, with approximately 100 sediment-particle counts per transect. Each transect was defined by coordinates on the left and right sides of the river, and sediment grain sizes were measured at five equally spaced locations within the bankfull channel on ...

Info
Depth to Transition--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ...

Info
Isopachs--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ...

Info
Sediment Thickness--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ...

Info
Transgressive Contours--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ...

Info
Depth to Transition--Bolinas to Pescadero, California

This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "DepthToTransition_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ...

Info
Isopachs--Bolinas to Pescadero, California

This part of DS 781 presents data for the isopachs for the Bolinas to Pescadero, California, region. The vector data file is included in "Isopachs_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters between offshore Offshore Bolinas and offshore Pescadero ...

Info
Sediment Thickness—Bolinas to Pescadero, California

This part of DS 781 presents data for the sediment-thickness map of the Bolinas to Pescadero, California, region. The raster data file is included in "SedimentThickness_BolinastoPescadero.zip," which is accessible from http://pubs.usgs.gov/ds/781/BolinastoPescadero/data_catalog_BolinastoPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ...

Info
Transgressive Contours--Bolinas to Pescadero, California

This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "TransgressiveContours_BolinasToPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from ...

Info
Depth to Transition--Point Conception to Hueneme Canyon, California

This part of DS 781 presents data for the depth-to-transition map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "DepthToTransition_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ...

Info
Isopachs--Point Conception to Hueneme Canyon, California

This part of DS 781 presents data for the isopachs for the Point Conception to Hueneme Canyon, California, region. The vector data file is included in "Isopachs_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection data collected in 2014 ...

Info
Sediment Thickness--Point Conception to Hueneme Canyon, California

This part of DS 781 presents data for the sediment-thickness map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "SedimentThickness_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ...

Info
Transgressive Contours--Point Conception to Hueneme Canyon, California

This part of DS 781 presents data for the transgressive contours for the Point Conception to Hueneme Canyon, California, region. The vector file is included in "TransgressiveContours_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ...

Info
Depth to Transition--Pigeon Point to Monterey, California

This part of DS 781 presents data for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "DepthToTransition_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ...

Info
Isopachs--Pigeon Point to Monterey, California

This part of DS 781 presents data for the sediment-thickness isopachs for the Pigeon Point to Monterey Bay, California, map region. The vector data file is included in "Isopachs_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ...

Info
Sediment Thickness--Pigeon Point to Monterey, California

This part of DS 781 presents data for the sediment-thickness map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "SedimentThickness_PigeonPointToMontereyBay.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from ...

Info
Transgressive Contours--Pigeon Point to Monterey, California

This part of DS 781 presents data for the transgressive contours for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The vector file is included in T "TransgressiveContours_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was ...

Info
Depth to Transition—Point Sur to Point Arguello, California

This part of DS 781 presents data for the depth-to-transition map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “DepthToTransition_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ...

Info
Isopachs—Point Sur to Point Arguello, California

This part of DS 781 presents data for the isopachs of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Isopachs_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, ...

Info
Sediment Thickness—Point Sur to Point Arguello, California

This part of DS 781 presents data for the sediment-thickness map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “SedimentThickness_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ...

Info
Transgressive Contours—Point Sur to Point Arguello, California

This part of DS 781 presents data for the transgressive contours of the Point Sur to Point Arguello, California, region. The vector data file is included in the “TransgressiveContours_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data ...

Info
Biomarker analysis of cold seeps along the United States Atlantic Margin

Results of lipid biomarker concentration and compound specific isotopes analyzed from authigenic carbonates and surrounding sediment collected from Baltimore and Norfolk seep fields along the United States Atlantic Margin are presented in csv format. Samples were collected by the U.S. Geological Survey and Duke University between 2012 and 2015 using remotely operated vehicles (ROVs). Geochemical analysis was performed using gas chromatography (GC) and GC-combustion isotope ratio mass spectrometry (GC-C-IRMS ...

Info
Geochemistry time series and growth parameters from Tutuila, American Samoa coral record

Geochemical analysis (including age-corrected radiocarbon stable isotopes, and elemental composition) and growth parameters (including calcification rate, density, and extension information) were measured from a coral core collected from a reef off the southern side of Tutuila, American Samoa. The core was collected near Matautuloa Point on 8 April 2012 in collaboration with the Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), ...

Info
Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The ...

Info
Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. ...

Info
Ground control point locations for UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the Unmanned Aerial System (UAS) survey on of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The GCPs were used to establish ground control for the survey and consisted of 24 small (80 x 80 centimeter) square tarps with black-and-white cross patterns placed ...

Info
Orthomosaic imagery for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents a high-resolution orthomosaic image of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The orthomosaic has a resolution of 3 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The raw imagery used to create the orthomosaic image was acquired using two UAS fitted with Ricoh GR II digital cameras with ...

Info
Topographic point cloud for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents a topographic point cloud of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta, derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The point cloud contains 380,296,568 points at an approximate point density of 323 point per square-meter. Each point contains an explicit horizontal and vertical coordinate, color, intensity, and ...

Info
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02

This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ...

Info
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2018-12-02

This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ...

Info
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-06-03

This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ...

Info
Orthomosaic imagery for Whiskeytown Lake and surrounding area, expanded AOI, 2019-06-03

This portion of the data release presents an RGB orthomosaic image of an expanded area surrounding Whiskeytown Lake derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 14-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with ...

Info
Orthomosaic imagery for Whiskeytown Lake and surrounding area, 2019-06-03

This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with 8-bit ...

Info
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-11-12

This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ...

Info
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2019-11-12

This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ...

Info
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2020-11-10

This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ...

Info
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2020-11-10

This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. The orthomosaic is available in a high-resolution 5-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ...

Info
Radiocarbon dating of deep-sea black corals collected off the southeastern United States

Results of radiocarbon dating of deep-sea (500 m to 700 m) black corals are presented. These corals were collected off the southeastern United States as part of the Southeastern United States Deep-Sea Corals (SEADESC) Initiative.

Info
Coral geochemistry time series from Kahekili, west Maui

Geochemical analysis (including stable boron, boron:calcium ratio, and carbon and oxygen isotopes) were measured from coral cores collected in July 2013 from the shallow reef at Kahekili in Kaanapali, west Maui, Hawaii from scleractinian Porites lobata.

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in the Channel Islands

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in the Channel Islands

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in the Channel Islands

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in the Channel Islands

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in the Channel Islands

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in the Channel Islands

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in the Channel Islands

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in the Channel Islands

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in the Channel Islands

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in the Channel Islands

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in the Channel Islands

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in the Channel Islands

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in the Channel Islands

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in the Channel Islands

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in the Channel Islands

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in the Channel Islands

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Channel Islands

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Channel Islands

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Channel Islands

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Channel Islands

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS Southern California v3.0 Phase 2 projections of coastal cliff retreat due to 21st century sea-level rise

This dataset contains projections of coastal cliff-retreat rates and positions for future scenarios of sea-level rise (SLR). Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical and statistical models based on field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS) v.3.0 Phase 2 in Southern California. Details: Cliff ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 coastal squeeze projections

Projected coastal squeeze derived from CoSMoS Phase 2 shoreline change and cliff retreat projections. Projected coastal squeeze extents illustrate the available area between shoreline (mean high water; MHW) positions and man-made structures and barriers (referred to as non-erodible structures) or cliff-top retreat, as applicable, for a range of sea-level rise scenarios. The coastal squeeze polygons include results from the Coastal Storm Modeling System (CoSMoS) shoreline change (CoSMoS-COAST; Vitousek and ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 runup projections

Geographic extent of projected runup associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with ...

Info
CoSMoS Southern California v3.0 projections of shoreline change due to 21st century sea-level rise

This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using CoSMoS-COAST, a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Details: Projections of shoreline position in Southern California are made for scenarios of 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 5.0 meters of sea-level rise by the year 2100. Four datasets are available for different ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Los Angeles County

Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Los Angeles County

Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Los Angeles County

Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Los Angeles County

Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Los Angeles County

Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Los Angeles County

Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Los Angeles County

Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Los Angeles County

Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Los Angeles County

Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Los Angeles County

Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Los Angeles County

Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Los Angeles County

Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Los Angeles County

Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Los Angeles County

Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Los Angeles County

Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Los Angeles County

Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Los Angeles County

Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Los Angeles County

Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Los Angeles County

Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Los Angeles County

Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Orange County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Orange County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Orange County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Orange County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Orange County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Orange County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Orange County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Orange County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Orange County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Orange County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Orange County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Orange County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Orange County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Orange County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Orange County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Orange County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Orange County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Orange County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Orange County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Orange County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Santa Barbara County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Santa Barbara County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Santa Barbara County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Santa Barbara County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Santa Barbara County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Santa Barbara County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Santa Barbara County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Santa Barbara County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Santa Barbara County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Santa Barbara County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Santa Barbara County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Santa Barbara County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Santa Barbara County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Santa Barbara County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Santa Barbara County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Santa Barbara County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Ventura County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Ventura County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Ventura County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Ventura County

Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Ventura County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Ventura County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Ventura County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Ventura County

Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Ventura County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Ventura County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Ventura County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Ventura County

Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Ventura County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Ventura County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Ventura County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Ventura County

Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Ventura County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Ventura County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Ventura County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Ventura County

Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ...

Info
Shoreline change rates along the coast of California from 1998 to 2016

This dataset contains California shoreline change rates derived from mean high water (MHW) shorelines from 1998 (in Central and Southern California) and 2002 (in Northern California) to 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method ...

Info
Mean high water (MHW) shorelines along the coast of California used to calculated shoreline change from 1998 to 2016

This dataset contains mean high water (MHW) shorelines for sandy beaches along the coast of California for the years 1998/2002, 2015, and 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method. The smoothed contour line was then quality ...

Info
Shoreline change data along the coast of California from 2015 to 2016

This dataset contains shoreline change measurements for sandy beaches along the coast of California over the 2015/2016 El Nino winter season. Mean high water (MHW) shorelines were extracted from Light Detection and Ranging (LiDAR) digital elevation models from the fall of 2015 and the spring of 2016 using the ArcGIS smoothed contour method. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. ...

Info
Projected groundwater emergence and shoaling for coastal California using present-day and future sea-level rise scenarios

Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ...

Info
Projected groundwater head for coastal California using present-day and future sea-level rise scenarios

Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ...

Info
Projected water table depths for coastal California using present-day and future sea-level rise scenarios

Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ...

Info
Central California CoSMoS v3.1 projections of coastal cliff retreat due to 21st century sea-level rise

This dataset contains spatial projections of coastal cliff retreat (and associated uncertainty) for future scenarios of sea-level rise (SLR) in Central California. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS). Read metadata and references ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Monterey County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Monterey County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Monterey County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Monterey County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 100-year storm in Monterey County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 1-year storm in Monterey County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 20-year storm in Monterey County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: average conditions in Monterey County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Monterey County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Monterey County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Monterey County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Monterey County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Monterey County

This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Monterey County

This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Monterey County

This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Monterey County

This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Monterey County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Monterey County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Monterey County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Monterey County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Francisco County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Francisco County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Francisco County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Francisco County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Francisco County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Francisco County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Francisco County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Francisco County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Francisco County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Francisco County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Francisco County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Francisco County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Francisco County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Francisco County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Francisco County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Francisco County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Francisco County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Francisco County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Francisco County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Francisco County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Luis Obispo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Luis Obispo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Luis Obispo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Luis Obispo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Luis Obispo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Luis Obispo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Luis Obispo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Luis Obispo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Luis Obispo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Luis Obispo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Luis Obispo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Luis Obispo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Luis Obispo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Luis Obispo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Luis Obispo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Luis Obispo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Luis Obispo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Luis Obispo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Mateo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Mateo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Mateo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Mateo County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Mateo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Mateo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Mateo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Mateo County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Mateo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Mateo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Mateo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Mateo County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Mateo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Mateo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Mateo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Mateo County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Mateo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Mateo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Mateo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Mateo County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Barbara County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Barbara County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Barbara County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Barbara County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Barbara County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Barbara County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Barbara County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Barbara County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Barbara County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Barbara County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Barbara County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Barbara County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Barbara County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Barbara County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Barbara County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Barbara County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Barbara County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Barbara County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Barbara County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Barbara County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Cruz County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Cruz County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Cruz County

This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Cruz County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Cruz County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Cruz County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Cruz County

This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Cruz County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Cruz County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Cruz County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Cruz County

This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Cruz County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Cruz County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Cruz County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Cruz County

This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Cruz County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Cruz County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Cruz County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Cruz County

This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ...

Info
Central California CoSMoS v3.1 projections of shoreline change due to 21st century sea-level rise

This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Read metadata carefully. Details: Projections of shoreline position in the Central Coast of California are made for scenarios of 25, 50, 75, 92, 100 ...

Info
hawaii_sea - Sea Level Hazard Intensity Level in the coastal zone of Hawaii, Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Hawaii, Hawaii

Info
kauai_sea - Sea Level Hazard Intensity Level in the coastal zone of Kauai, Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Kauai, Hawaii

Info
lanai_sea - Sea Level Hazard Intensity Level in the coastal zone of Lanai, Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Lanai, Hawaii

Info
maui_sea - Sea Level Hazard Intensity Level in the coastal zone of Maui, Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Maui, Hawaii

Info
molo_sea - Sea Level Hazard Intensity Level in the coastal zone of Molokai, Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Molokai, Hawaii

Info
oahu_sea - Sea Level Hazard Intensity Level in the coastal zone of Oahu, Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Oahu, Hawaii

Info
sand_sea - Sea Level Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii

Sea Level Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii

Info
Inorganic compositional data for fine-grained Puget Sound sediment along the Burlington Northern Santa Fe rail line, September 2015

Nearshore surface sediment was collected with a petit ponar grab sampler between April 22 and September 17, 2015, at five sites in Puget Sound, Washington. Four sites were adjacent to the Burlington Northern Santa Fe rail line in urban and non-urban areas, and one site was in an urban area that was not adjacent to the rail line. Total and near-total major, minor, trace, and rare earth element contents of the <0.063 mm sediment fraction were determined by inductively coupled plasma atomic emission ...

Info
Geochemistry of sediment and organic matter in drainages burned by the Altas and Nuns wildfires in October 2017 and of nearshore seabed sediment in north San Francisco Bay from March to April 2018

Fine-grained sediment was collected from the banks of Napa River, Sonoma Creek, and tributaries in March 2018 and from shallow nearshore areas of the northern reach of San Francisco Bay in April 2018. Bulk sediment was dated using activities of short-lived cosmogenic radionuclides (beryllium-7, cesium-137, and lead-210). Contents of potentially toxic metals and source-rock-indicative elements, including rare earth elements, were quantified in the fine fraction of sediment (particles less than 0.063 mm ...

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ...

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ...

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11CEV01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ...

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ...

Info
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, ...

Info
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, ...

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ...

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ...

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ...

Info
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ...

Info
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ...

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ...

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ...

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ...

Info
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ...

Info
HLY1002_Averaged

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
CTD_casts

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
USGS Arctic Ocean Carbon Cruise 2010: Discrete Lab data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
Healy_Continuous

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
Healy_Discrete

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
HLY1001_Averaged

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
CTD_casts

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
USGS Arctic Ocean Carbon Cruise 2011: Discrete Underway data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
USGS Arctic Ocean Carbon Cruise 2011: Discrete Lab data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
Healy_Continuous

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
Healy_Discrete

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ...

Info
USGS Arctic Ocean Carbon Cruise 2012: Discrete Underway Laboratory data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent; however, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Locations of convergences in the maximum alongshore current

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Locations of decelerations in the direction of flow in the maximum alongshore current

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of wave- and current-induced shear stress to critical values for oil-sand ball and sediment mobilization

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: wave direction

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Significant wave height

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: peak wave period

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Scenarios_Grid

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Tidal_Grid

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of the wave- and current-induced shear stress to the critical value for oil-tar balls and sediment mobilization over a tidal cycle

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of the wave- and current-induced shear stress to the critical value for oil-tar balls and sediment mobilization weighted by probability of wave scenario occurrence

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls of varying sizes weighted by probability of wave scenario occurrence

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB ...

Info
Microbial Ecology of the Floridan Aquifer near Okeechobee, FL

This metadata record describes the microbial uptake of nutrients by native planktonic and biofilm-associated bacteria within the Upper Floridan Aquifer (approximately 1,000 feet below land surface) in the Okeechobee, Florida area. Groundwater samples were collected between 2018 and 2019 from a South Florida Water Management District (SFWMD) monitoring well installed at the Kissimmee River Aquifer Storage and Recovery (ASR) facility, which is located at the discharge point of the Kissimmee River into Lake ...

Info
Acquisition log maintained during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (PDFs of Excel spreadsheets)

Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ...

Info
1-meter backscatter imagery collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (GeoTIFF image)

A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ...

Info
2-meter bathymetric data collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (bathymetry and depth-colored hillshade relief GeoTIFFs)

A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ...

Info
Acquisition log maintained in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (PDF of scanned spreadsheet)

A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ...

Info
Acquisition log maintained during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (Excel spreadsheet)

Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ...

Info
Collections inventory for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Samples Repository

Since 2002, the Woods Hole Coastal and Marine Science Center’s Samples Repository supports research by providing secure storage for geological, biological, and geochemical samples; maintaining organization and an active inventory of these sample collections; and providing access to these collections for study and reuse. This collections inventory has been compiled, organized, and released as a searchable database to provide researchers and the general public with means to discover and request scientific ...

Info
Data and calculations to support the study of the sea-air flux of methane and carbon dioxide on the West Spitsbergen margin in June 2014

A critical question for assessing global greenhouse gas budgets is how much of the methane that escapes from seafloor cold seep sites to the overlying water column eventually crosses the sea-air interface and reaches the atmosphere. The issue is particularly important in Arctic Ocean waters since rapid warming there increases the likelihood that gas hydrate--an ice-like form of methane and water stable at particular pressure and temperature conditions within marine sediments--will break down and release its ...

Info
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation

Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ...

Info
Comparison of methane concentration and stable carbon isotope data for natural samples analyzed by discrete sample introduction module - cavity ring down spectroscopy (DSIM-CRDS) and traditional methods

A discrete sample introduction module (DSIM) was developed and interfaced to a cavity ring-down spectrometer to enable measurements of methane and CO2 concentrations and 13C values with a commercially available cavity ring-down spectrometer (CRDS). The DSIM-CRDS system permits the analysis of limited volume (5 - 100-ml) samples ranging six orders-of-magnitude from 100% analyte to the lower limit of instrument detection (2 ppm). We demonstrate system performance for methane by comparing concentrations and ...

Info
Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site

This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been numbered to indicate combinations of seafloor hardness, ruggedness and depth associated with biotopes derived by analysis of video data as described in the accompanying Open-File Report (Cochrane and others, 2017). The map was created using video and multibeam echosounder bathymetry and backscatter data collected in 2014 and processed in 2015 ...

Info
Orthoimagery of Eastern Dry Rocks coral reef, Florida, 2021

A seabed orthoimage was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (0.12 square kilometers) in size, and it was created using image-mosaicking methods and saved as a tiled, 5-mm resolution raster.

Info
Bathymetric digital elevation model (DEM) of Eastern Dry Rocks coral reef, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was derived in Metashape (ver. 1.6.5) from the point cloud, but it excludes the 'low noise' class. The DEM covers a rectangular area of seafloor ...

Info
Point cloud data of Eastern Dry Rocks coral reef, Florida, 2021

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'low noise') derived from the confidence values. LAS (and its compressed form, LAZ) is an open format ...

Info
Overlapping seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021

Underwater images totaling 138,733 in number were collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS ...

Info