Records using themekt "none"

Results are color-coded by center: PCMSC SPCMSC WHCMSC

Composite multibeam bathymetry surface of the southern Cascadia Margin offshore Oregon and northern California

Data from various sources, including 2018 and 2019 multibeam bathymetry data collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) were combined to create a composite 30-m resolution multibeam bathymetry surface of southern Cascadia Margin offshore Oregon and northern California. The data are available as a geoTIFF file.

Info
Polygon shapefile of data sources used to create a composite multibeam bathymetry surface of the southern Cascadia Margin offshore Oregon and northern California

This polygon shapefile describes the data sources used to create a composite 30-m resolution multibeam bathymetry surface of southern Cascadia Margin offshore Oregon and northern California.

Info
Bathymetric data for Whiskeytown Lake, December 2018

These metadata describe bathymetric data collected during a December 2018 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image.

Info
Bathymetric data for Whiskeytown Lake, May 2019

These metadata describe bathymetric data collected during a May 2019 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image.

Info
Bathymetric data for Whiskeytown Lake, September 2020

These metadata describe bathymetric data collected during a September 2021 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image.

Info
Distribution of particle size in suspension at various depths from San Pablo Bay and Grizzly Bay, California, 2020

These data present suspended particle size distributions collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected at one site in San Pablo Bay and one site in Grizzly Bay from January through February 2020 by deploying a Sequoia Scientific Laser In-situ Scattering and Transmissometry instrument (LISST 200x) from a small vessel near pre-established USGS instrument moorings. At both sites, data were collected on four dates at three depths, generally near the water surface, at mid depth, and near the sediment bed, for 1-3 minutes at each depth. LISST volume concentrations are most accurate when the optical percent transmission is above 30; when this is true, light passing through the sample volume is unlikely to be scattered by more than one particle. These files contain all samples collected; judgment should be applied when using them. Users are advised to check metadata and instrument information carefully for applicable time periods of specific data.

Info
Hydrodynamic time-series data from San Pablo Bay and Grizzly Bay, California, 2020

Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected in San Pablo Bay and Grizzly Bay from January to June 2020 at seven locations. Data files are grouped by area (shallows of San Pablo Bay, channel of San Pablo Bay, and shallows of Grizzly Bay). Each shallow site contained a variety of sensors located on two tripods, while the channel site consisted of one tripod. Users are advised to assess data quality carefully, and to check metadata for instrument information, as platform deployment times and data-processing methods varied.

Info
Distribution of particle size in suspension at various depths from San Pablo Bay and Grizzly Bay, California, 2019

These data present suspended particle size distributions collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected at one site in San Pablo Bay and one site in Grizzly Bay from June through August 2019, by deploying a Sequoia Scientific Laser In-situ Scattering and Transmissometry instrument (LISST 100x) from a small vessel near pre-established USGS instrument moorings. At both sites, data were collected on six dates at three depths, generally near the water surface, at mid depth, and near the sediment bed, for 1-3 minutes at each depth. LISST volume concentrations are most accurate when the optical percent transmission is above 30, as light passing through the sample volume is unlikely to be scattered by more than one particle. One file (ERO19PBP04) was removed due to poor data quality throughout the file. These files contain all samples collected; judgment should be applied when using them. Users are advised to check metadata and instrument information carefully for applicable time periods of specific data.

Info
Hydrodynamic time-series data from San Pablo Bay and Grizzly Bay , California, 2019

Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected in San Pablo Bay and Grizzly Bay from June to August 2019 at seven unique stations. Data files are grouped by area (shallows of San Pablo Bay, channel of San Pablo Bay, and shallows of Grizzly Bay). Each shallow site contained a variety of sensors located on two tripods and one surface mooring, while the channel site consisted of one tripod. Users are advised to assess data quality carefully, and to check metadata for instrument information, as platform deployment times and data-processing methods varied.

Info
Storm-Impact Scenario XBeach Model Inputs – Initial Bathymetry and Topography Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Hurricane Maria Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 0800 AM EDT TUE SEPT 26 2017

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland and Delaware coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Maria in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Storm-Impact Scenario XBeach Model Results – Scenario 11 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 12 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 1 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 20 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 2 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 3 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 6 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 7 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Storm-Impact Scenario XBeach Model Results – Scenario 8 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs of wave spectra (based on significant wave height, peak wave period, and wave direction) and water level (tide and surge) time series at the seaward model boundary that span the duration of each storm bin. The Xbeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 are provided via a USGS data release (storm scenario bins where no events were observed are excluded). For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2017).

Info
Sediment Trap Time Series of GDGT and alkenone flux in the Gulf of Mexico

The tetraether index of C86 (TEX86) and alkenone unsaturation index (Uk37Õ) molecular biomarker proxies have been broadly applied in down-core marine sediments to reconstruct past sea surface temperature (SST). Although both TEX86 and Uk37 have been interpreted as proxies for mean annual SST throughout the global ocean, regional studies of glycerol dibiphytanyl glycerol tetraethers (GDGT)s and alkenones in sinking particulate matter (SPM) are required to understand the influence of seasonality, depth distribution and diagenesis on downcore variability. USGS scientists measured GDGT and alkenone flux, as well as the TEX86 and Uk37Õ indices in a 4-year sediment trap time series (2010-2014) in the northern Gulf of Mexico (nGoM), with weekly-to-monthly resolution, and compared these data with core-top sediments at the same location. GDGT and alkenone fluxes do not show a consistent seasonal cycle; however, the largest flux peaks for both occurs in winter. Uk37 co-varies with SST over the 4-year sampling interval, but the U-SST relationship in this dataset implies a smaller slope or non-linearity at high temperatures when compared with existing calibrations. Furthermore, the flux-weighted Uk37 value from sinking particles is significantly lower than that of underlying core-top sediments, suggesting preferential diagenetic loss of the tri-unsaturated alkenone in sediments. TEX86 does not co-vary with SST, suggesting production in the subsurface ocean. The flux-weighted mean TEX86 matches that of core-top sediments, suggesting that sedimentary TEX86 in the Gulf of Mexico reflects local autochthonous production. We explore these potential sources of uncertainty in both proxies in the GoM, but demonstrate that they show nearly identical trends in 20th century SST, despite these factors.

Info
2014–2015 Ocean Current and Pressure Time Series Data from the Upper Florida Keys: Crocker Reef, FL

Three Acoustic Doppler current profilers (ADCP), a current meter and a pressure logger were deployed at Crocker Reef, a senile (dead) barrier reef located in the northern portion of the Florida Reef Tract from December 12, 2014 to January 30, 2015 to quantify flow characteristics in various sub-regions. Two SonTek Argonaut-XR current profilers were deployed on the reef flat and configured to measure three-dimensional flow velocities throughout the water column. Both current profilers sampled at a rate of 1 hertz (Hz) for 120 seconds (s) every 10 minutes; each 120-s sampling was internally averaged to provide data at 10-minute resolution. Current profiles were made with a vertical measurement spacing of 0.5 meters (m).

Info
2014–2015 Ocean Current and Pressure Time Series Data from the Upper Florida Keys: Crocker Reef, FL

Three Acoustic Doppler current profilers (ADCP), a current meter and a pressure logger were deployed at Crocker Reef, a senile (dead) barrier reef located in the northern portion of the Florida Reef Tract from December 12, 2014 to January 30, 2015 to quantify flow characteristics in various sub-regions. A RBR pressure logger was deployed on the fore reef and configured to measure pressure at a rate of 2 hertz (Hz). The logger was positioned at a water depth of 14 meters, the deepest part of the fore reef) in order to obtain wave statistics measurements.

Info
2014–2015 Ocean Current and Pressure Time Series Data from the Upper Florida Keys: Crocker Reef, FL

Three Acoustic Doppler current profilers (ADCP), a current meter and a pressure logger were deployed at Crocker Reef, a senile (dead) barrier reef located in the northern portion of the Florida Reef Tract from December 12, 2014 to January 30, 2015 to quantify flow characteristics in various sub-regions. A RDI Workhorse Monitor current profiler was deployed on the reef flat and configured to measure three-dimensional flow velocities throughout the water column. Current measurements were taken at a rate of 1 hertz (Hz) for 120 seconds (s) every 10 minutes; each 120-s sampling was internally averaged to provide data at 10-minute resolution. Current profiles were made with a vertical measurement spacing of 0.5 meters (m).

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, 2010: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Chandeleur Islands, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography and Imagery--Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Boomer Seismic Reflection Data, collected on USGS Cruise 99ASR01, Lake Okeechobee, Florida, 29 June - 30 June, 1999.

This report consists of two-dimensional marine seismic reflection profile data from Lake Okeechobee, Fla., that were acquired in June of 1999 aboard the R/V G. K. Gilbert. These data are available in a variety of formats, including binary, ASCII and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g399fl/html/g-3-99-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99SCE01, Little River Inlet to the entrance of Winyah Bay, South Carolina, 8 June - 16 June, 1999.

This report consists of two-dimensional marine seismic reflection profile data from South Carolina. These data were acquired in June of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geologists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your Web browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g199sr/html/g-1-99-sr.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99LCA01, Crescent Beach Spring, Florida, 26 April - 27 April, 1999.

This report consists of two-dimensional marine seismic reflection profile data from Crescent Beach Spring, Florida. These data were acquired in April of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Trackline maps and GIF images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g199fl/html/g-1-99-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Boomer Seismic Reflection Profiles and Shotpoint Navigation Collected on USGS Field Activities 01ASR01, 01ASR02, 02ASR01, and 02ASR02,Miami, Florida, November and December, 2001, and January and February, 2002.

This appendix consists of two-dimensional marine seismic reflection profile data from Miami, Florida, canals. These data were acquired in November and December of 2001 and in January and February of 2002 using a 4.9 m (16 ft) jonboat. The data are available in a variety of formats, including ASCII,HTML, and GIF images. Reference maps and GIF images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b101fl/html/b-1-01-fl.meta.html , http://walrus.wr.usgs.gov/infobank/b/b201fl/html/b-2-01-fl.meta.html , http://walrus.wr.usgs.gov/infobank/b/b102fl/html/b-1-02-fl.meta.html , and http://walrus.wr.usgs.gov/infobank/b/b202fl/html/b-2-02-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 97KEY01, Upper and Middle Florida Keys, 12 October - 1 November, 1997.

This report consists of two-dimensional marine seismic reflection profile data from the upper and middle Florida Keys. The area of operations extended from just north of Molasses Reef off north Key Largo (Upper Keys) to the east boundary of Looe Key National Marine Sanctuary (Lower Keys). These data were acquired in October and November of 1997 with the Charter Vessel Captain's Lady. The data are available in a variety of formats, including binary, ASCII, HTML, Shapefiles, JPG and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and JPG images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c197fl/html/c-1-97-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Buzzards Bay: continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf, (32-bit GeoTIFF, UTM 19 NAD 83, NAVD 88 vertical datum).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Buzzards Bay: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Cape Cod Bay: continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf, (32-bit GeoTIFF, UTM 19 NAD 83, NAVD 88 vertical datum).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Cape Cod Bay: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Massachusetts Bay and adjacent land: continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf, (32-bit GeoTIFF, UTM 19 NAD 83, NAVD 88 vertical datum).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Massachusetts Bay and adjacent land: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Vineyard and Nantucket Sounds, southern coast of Cape Cod including Martha's Vineyard and Nantucket: continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf, (32-bit GeoTIFF, UTM 19 NAD 83, NAVD 88 vertical datum).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
Vineyard and Nantucket Sounds, Southern coast of Cape Cod including Martha's Vineyard and Nantucket: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 1996 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1996 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 1996 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 1996 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1998 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 2000 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Bathymetry of the Historic Area Remediation Site in 1996 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84)

The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected data from this cruise are bathymetry, backscatter intensity, and navigation trackline.

Info
Bathymetry of the Sandy Hook artificial reef (2-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected data from this cruise are bathymetry, backscatter intensity, and navigation trackline.

Info
Tracklines of a multibeam survey of the sea floor of the Sandy Hook artificial reef (polyline shapefile, geographic, WGS 84)

The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected data from this cruise are bathymetry, backscatter intensity, and navigation trackline.

Info
GeoTIFF image of the shaded-relief bathymetry, pseudocolored by backscatter intensity, of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84)

The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected data from this cruise are bathymetry, backscatter intensity, and navigation trackline.

Info
GeoTIFF image of the shaded-relief bathymetry of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84)

The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected data from this cruise are bathymetry, backscatter intensity, and navigation trackline.

Info
Sea-floor environments in the Hudson Canyon region (polyline shapefile, geographic, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
Geomorphic provinces in the Hudson Canyon region (polyline shapefile, geographic, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
Bathymetry of the Hudson Canyon region (100-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
Tracklines of a multibeam survey of the sea floor of the Hudson Canyon region carried out in 2002 (polyline shapefile, geographic, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
GeoTIFF image of the shaded-relief bathymetry, pseudo-colored by backscatter intensity, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
GeoTIFF image of shaded-relief bathymetry, illuminated from 315 degrees, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
GeoTIFF image of shaded-relief bathymetry, illuminated from 45 degrees, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ronald H. Brown. Maps derived from the multibeam observations show sea-floor bathymetry and backscatter intensity (a measure of sea floor texture and roughness), geomorphic provinces, and sea-floor environments (Butman and others, 2006). The sea floor was mapped by the U.S. Geological Survey in cooperation with Rutgers University and with support from NOAA.

Info
Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 1996 (polyline shapefile, geographic, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 1998 (polyline shapefile, geographic, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 2000 (polyline shapefile, geographic, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84)

The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Atlantic Beach artificial reef. The data from this survey are bathymetry, backscatter intensity, and navigation trackline.

Info
Bathymetry of the Atlantic Beach artificial reef (2-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Atlantic Beach artificial reef. The data from this survey are bathymetry, backscatter intensity, and navigation trackline.

Info
Tracklines of a multibeam survey of the sea floor of the Atlantic Beach artificial reef (polyline shapefile, geographic, WGS 84)

The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Atlantic Beach artificial reef. The data from this survey are bathymetry, backscatter intensity, and navigation trackline.

Info
GeoTIFF image the shaded-relief bathymetry, pseudocolored by backscatter intensity, of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84)

The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Atlantic Beach artificial reef. The data from this survey are bathymetry, backscatter intensity, and navigation trackline.

Info
GeoTIFF image of shaded-relief bathymetry of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84)

The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Atlantic Beach artificial reef. The data from this survey are bathymetry, backscatter intensity, and navigation trackline.

Info
Polygon boundaries for source data of a continuous terrain model for water circulation studies: Barnegat Bay, New Jersey (Esri polygon shapefile, Geographic, WGS 84)

Water quality in the Barnegat Bay estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Bay watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events. The scale of the estuary and the scope of the problems within it required a regional approach to understand and model water circulation within the bay and adjacent ocean. A continuous elevation surface (terrain model) integrating all available elevation data in the area was produced for the water circulation modeling efforts.

Info
Continuous terrain model for water circulation studies, Barnegat Bay, New Jersey (10 meter resolution, 32-bit GeoTIFF, UTM 18, WGS 84)

Water quality in the Barnegat Bay estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Bay watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events. The scale of the estuary and the scope of the problems within it required a regional approach to understand and model water circulation within the bay and adjacent ocean. A continuous elevation surface (terrain model) integrating all available elevation data in the area was produced for the water circulation modeling efforts.

Info
GeoTIFF image of the backscatter intensity of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor offshore of Fire Island Inlet, New York, in 1998 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Grid of the sea-floor bathymetry southwest of Montauk Point, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor southwest of Montauk Point, New York, in 1998 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Grid of the sea-floor bathymetry offshore of Moriches Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor offshore of Moriches Inlet, New York, in 1998 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of the backscatter intensity of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Tracklines of a multibeam survey of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (polyline shapefile, geographic, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Collection, analysis, and age-dating of sediment cores from a salt marsh platform and ponds, Rowley, Massachusetts, 2014-15

Sediment cores were collected from three sites within the Plum Island Ecosystems Long-Term Ecological Research (PIE-LTER) domain in Massachusetts to obtain estimates of long-term marsh decomposition and evaluate shifts in the composition and reactivity of sediment organic carbon in disturbed marsh environments. Paired sediment cores were collected from three sites on the marsh platform and from three ponds; these cores were about 100 and 50 centimeters in length, respectively. The marsh sites had similar elevations, at about 1.41 to 1.51 meters relative to the North American Vertical Datum of 1988, and similar salt marsh grass communities, dominated by Spartina patens, S. alterniflora, and Distichlis spicata. Permanently inundated ponds within each site had comparable depths (0.24–0.30 meters) but varied in size (between 643 and 7,149 square meters; Spivak et al., 2017, 2018). The U.S. Geological Survey analyzed radioisotope concentrations for lead-210, radium-226, cesium-127, and beryllium-7 from six marsh cores and three pond cores to develop an age model for each core. This data release includes calculated percent dry bulk density and raw radioisotope data for these cores. Spivak, A.C., Gosselin, K., Howard, E., Mariotti, G., Forbrich, I., Stanley, R., and Sylva, S.P., 2017, Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem: Journal of Geophysical Research-Biogeosciences, 122(6), 1371-1384. Spivak, A. C., Gosselin, K. M., and Sylva, S.P., 2018, Shallow ponds are biogeochemically distinct habitats in salt marsh ecosystems: Limnology and Oceanography, 63(4), 1622-1642.

Info
The Massachusetts Bay Internal Wave Experiment, August 1998: Data Report

This data report presents oceanographic observations made in Massachusetts Bay in August 1998 as part of the Massachusetts Bay Internal Wave Experiment (MBIWE98). MBIWE98 was carried out to characterize large-amplitude internal waves in Massachusetts Bay and to investigate the possible resuspension and transport of bottom sediments caused by these waves. This data report presents a description of the field program, an overview of the data through summary plots and statistics, and the time-series data in NetCDF format. The objective of this report is to make the data available in digital form and to provide summary plots and statistics to facilitate browsing of the data set.

Info
SEG-Y format of boomer seismic-reflection profiles collected in the Pulley Ridge study area 2001

These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development.

Info
Archive of side scan sonar and bathymetry data collected during USGS cruise 06FSH01 offshore of Siesta Key, Florida, May 2006.

This data set contains swath bathymetric data collected during USGS cruise 06FSH01 aboard the R/V G.K. Gilbert. A side scan sonar, bathymetric, and high-resolution seismic-reflection survey was conducted off Sarasota, FL to describe the relationship between the sediments and morphology of the inner shelf and adjacent shoreface. These data are part of the Florida Shelf Habitat (FLaSH) map project. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g106fl/html/g-1-06 -fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Bare Earth Topography-Colonial National Historical Park

Elevation maps (also known as Digital Elevation Models or DEMs) of Colonial National Historical Park were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ASCII text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each surface. Elevation measurements were collected in Virginia, over Colonial National Historical Park, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the area at approximately 60 meters per second while surveying the base areas of the park. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers can easily be surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Grid of the sea-floor bathymetry offshore of Fire Island Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
U.S. Geological Survey Oceanographic Time Series Data Collection

The oceanographic time series data collected by U.S. Geological Survey scientists and collaborators are served in an online database at http://stellwagen.er.usgs.gov/index.html. These data were collected as part of research experiments investigating circulation and sediment transport in the coastal ocean. The experiments (projects, research programs) are typically one month to several years long and have been carried out since 1975. New experiments will be conducted, and the data from them will be added to the collection. As of 2016, all but one of the experiments were conducted in waters abutting the U.S. coast; the exception was conducted in the Adriatic Sea. Measurements acquired vary by site and experiment; they usually include current velocity, wave statistics, water temperature, salinity, pressure, turbidity, and light transmission from one or more depths over a time period. The measurements are concentrated near the sea floor but may also include data from the water column. The user interface provides an interactive map, a tabular summary of the experiments, and a separate page for each experiment. Each experiment page has documentation and maps that provide details of what data were collected at each site. Links to related publications with additional information about the research are also provided. The data are stored in Network Common Data Format (netCDF) files using the Equatorial Pacific Information Collection (EPIC) conventions defined by the National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory. NetCDF is a general, self-documenting, machine-independent, open source data format created and supported by the University Corporation for Atmospheric Research (UCAR). EPIC is an early set of standards designed to allow researchers from different organizations to share oceanographic data. The files may be downloaded or accessed online using the Open-source Project for a Network Data Access Protocol (OPeNDAP). The OPeNDAP framework allows users to access data from anywhere on the Internet using a variety of Web services including Thematic Realtime Environmental Distributed Data Services (THREDDS). A subset of the data compliant with the Climate and Forecast convention (CF, currently version 1.6) is also available.

Info
Acoustic-backscatter data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA

These metadata describe acoustic-backscatter data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The acoustic-backscatter data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates.

Info
Bathymetry data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA

These metadata describe bathymetry data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The bathymetry data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates, vertically referenced to NAVD88.

Info
Near-bed velocity measurements in Monterey Bay during arrival of the 2010 Chile Tsunami

On February 27, 2010, a tsunami originating near Chile arrived in Monterey Bay, California. This data release comprises two hours of pressure and near-bed velocity data spanning the largest tsunami waves. At the time, the U.S. Geological Survey Pacific Coastal and Marine Science Center had a remotely-controlled instrumented platform deployed adjacent to the Santa Cruz Municipal Wharf (mean depth 9 m) for collecting hydrodynamic and sediment transport data. In anticipation of the arrival of the tsunami, sampling was changed to better capture the event. Pressure and near-bed velocity profiles were measured at 1 Hz for 25 minutes every half hour. The velocities are influenced by surface waves, tsunami waves, and tidal currents. The velocity profiles capture the unsteady boundary layer that developed due to the tsunami-induced currents. They are useful for understanding the frictional interaction of the tsunami with the sea floor, as well as sediment transport produced by the tsunami.

Info
Profiles of salinity, temperature, depth, turbidity, and distributions of particle size in suspension collected during four 0.25-day periods in south San Francisco Bay, California, summer 2020

Profiles of salinity, temperature, turbidity, and particle size distribution were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at two locations in south San Francisco Bay. Data were collected at depth intervals ranging between 0.5 and 2 m (depending on total water depth); sensors remained at each depth for 1 minute. Each profile was collected from surface to bed, and the near-surface region was sampled again at the end of the profile to check steady-state conditions. Profiles were collected for 4 days, for about 7.75 hours each day: Jul 21, 22, 24, and 28, 2020. Data files are grouped by site (channel or shallows) and by instrument (CTD or LISST). Users are advised to assess data quality carefully, and to check metadata for instrument information.

Info
Hydrodynamic timeseries data from south San Francisco Bay, California, summer 2020

Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, suspended particle size, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at two locations in south San Francisco Bay. Data were collected in the channel (one platform) and in the shallows (three co-located platforms) for 2 weeks in July 2020. Data files are grouped by site (channel or shallows). Each site contained instrumentation to collect the data listed, with slight instrument and setup variations between the two sites due to logistics. Users are advised to assess data quality carefully, and to check metadata for instrument information, as platform deployment times and data-processing methods varied.

Info
Acoustic backscatter data collected in 2008 offshore Tijuana River Estuary, California, during USGS Field Activity S-5-08-SC

These metadata describe acoustic backscatter data collected during a 2008 SWATHPlus-M survey offshore Tijuana River Estuary, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number S-5-08-SC. The acoustic backscatter data are provided as a GeoTIFF image.

Info
Bathymetry data collected in 2008 offshore Tijuana River Estuary, California during USGS Field Activity S-5-08-SC

These metadata describe bathymetry data collected during a 2008 SWATHPlus-M survey offshore Tijuana River Estuary, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number S-5-08-SC. The bathymetry data are provided as GeoTIFF images in UTM, zone 11, NAD83 coordinates, vertically referenced to both NAVD88 and WGS84. A standard deviation grid is also provided.

Info
Meteorological data from Grizzly Bay, California, 2020

Meteorological data, including wind speed, wind direction, air temperature, relative humidity, and air pressure, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at a site located in Grizzly Bay, California. A Vaisala WXT530 meteorological station was mounted atop of a dolphin-type mooring structure, from January to June 2020. The data were truncated based on deployment and recovery times of hydrodynamic time-series data, spurious data points from the wind sensor were removed, and the file was written to netCDF. Spurious points were identified based on a recorded wind speed of 0. These points were set to NaN (Not a Number). Users are advised to assess data quality carefully, and to check metadata for additional instrument information.

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Bare Earth Topography-Fire Island National Seashore

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Bathymetry of the Hudson Shelf Valley (12-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter intensity of the sea floor of the valley, providing a framework for geologic, oceanographic, and geochemical studies. The data from the three surveys are combined to produce grids of bathymetry and backscatter intensity at 12-m resolution that cover the entire valley and the head of the Hudson Canyon. The mapping was done by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers with support from the Canadian Hydrographic Service and the University of New Brunswick.

Info
Elevation artifacts in digital bathymetric and topographic models for United States east (east_cdem_v1.tif) and west (west_cdem_v.tif) coasts (polygon shapefile, geographic, NAD83)

Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the assimilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial landscape to the seafloor for the contiguous U.S., focused on the coastal interface. All datasets were converted to a consistent horizontal datum, the North American Datum of 1983, but the native vertical datum for each dataset was not adjusted. Artifacts in the source elevation products were replaced with other available elevation products when possible, corrected using various spatial tools, or otherwise marked for future correction. This data release contains the assimilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial landscape to the seafloor for the contiguous U.S. that were constructed using this shapefile.

Info
Continuous and optimized 3-arcsecond elevation model for the United States east coast (32-bit GeoTiff, geographic, NAD83)

Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the compilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial landscape to the seafloor for the contiguous U.S. and portions of Mexico and Canada, focused on the coastal interface. All datasets were converted to a consistent horizontal datum, the North American Datum of 1983, but the native vertical datum for each dataset was not adjusted. Artifacts in the source elevation products were identified visually and replaced with other available elevation products when possible, corrected using various spatial tools, or otherwise marked for future correction.

Info
Continuous and optimized 3-arcsecond elevation model for the United States west coast (32-bit GeoTiff, geographic, NAD83)

Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the assimilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial landscape to the seafloor for the contiguous U.S., focused on the coastal interface. All datasets were converted to a consistent horizontal datum, the North American Datum of 1983, but the native vertical datum for each dataset was not adjusted. Artifacts in the source elevation products were replaced with other available elevation products when possible, corrected using various spatial tools, or otherwise marked for future correction.

Info
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Morro Bay, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of Morro Bay, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The acoustic backscatter data are available as a georeferenced TIFF image. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).

Info
Bathymetry from multibeam echosounder data collected offshore of Morro Bay, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Morro Bay, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The bathymetry data are available as a georeferenced TIFF image.

Info
Seafloor character offshore of Morro Bay, California

Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Morro Bay, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised numerical classification of the MBES data. The seafloor character raster is provided as a 2-meter resolution GeoTIFF.

Info
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Point Estero, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of Point Estero, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The acoustic backscatter data are available as a georeferenced TIFF image. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).

Info
Bathymetry from multibeam echosounder data collected offshore of Point Estero, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Point Estero, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The bathymetry data are available as a georeferenced TIFF image.

Info
Seafloor character offshore of Point Estero, California

Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Point Estero, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised numerical classification of the MBES data. The seafloor character raster is provided as a 2-meter resolution GeoTIFF.

Info
Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022)

Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along with ancillary meteorological data, collected from coastal wetlands across Cape Cod to evaluate the effect of hydrological management and salinity on carbon exchange in coastal wetlands.

Info
Multibeam acoustic-backscatter data collected offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I offshore alternative energy project

Multibeam acoustic-backscatter data were collected offshore of Morro Bay, California, from 2016 to 2019. The data were collected during five separate multi-agency surveys for the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management (BOEM) California Deepwater Investigations and Groundtruthing I (Cal DIG I) project, under a collaboration with the National Oceanic and Atmospheric Administration (NOAA), using Simrad 700 series hull-mounted multibeam echosounders. Data in 2017 and 2018 were acquired by the NOAA Hydrographic Vessel Rainier (surveys H1309, H13151, and H13152). The 2018 data acquired by the Ranier were collected during USGS field activity 2018-641-FA. Additional data were collected in 2019 by the NOAA Hydrographic Survey Vessel Fairweather (survey W00479). Data from the Scripps Institution of Oceanography R/V Sally Ride collected in 2016 (survey SR1604) were used to fill in a small gap in the NOAA data. The acoustic-backscatter data from the five surveys were combined into a single raster and are provided as a 10-meter resolution GeoTIFF.

Info
Multibeam bathymetry data collected in four surveys offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I offshore alternative energy project

Multibeam acoustic-bathymetry data were collected offshore of Morro Bay, California, from 2016 to 2019. The data were collected during five separate multi-agency surveys for the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management (BOEM) California Deepwater Investigations and Groundtruthing I (Cal DIG I) project, under a collaboration with the National Oceanic and Atmospheric Administration (NOAA), using Simrad 700 series hull-mounted multibeam echosounders. Data in 2017 and 2018 were acquired by the NOAA Hydrographic Vessel Rainier (surveys H1309, H13151, and H13152). The 2018 data acquired by the Ranier were collected during USGS field activity 2018-641-FA. Additional data were collected in 2019 by the NOAA Hydrographic Survey Vessel Fairweather (survey W00479). Data from the Scripps Institution of Oceanography R/V Sally Ride collected in 2016 (survey SR1604) were used to fill in a small gap in the NOAA data. The acoustic-backscatter data from the five surveys were combined into a single raster and are provided as a 10-meter resolution GeoTIFF.

Info
CMECS seafloor induration derived from multibeam echosounder data collected offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I, offshore alternative energy project

Seafloor induration (surface hardness) was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Morro Bay, California, from 2016 to 2020. MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management (BOEM) California Deepwater Investigations and Groundtruthing I (Cal DIG I) project, under a collaboration with the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised classification of the MBES data. The induration raster is provided as a 10-meter resolution GeoTIFF.

Info
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Point Buchon, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of Point Buchon, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The acoustic backscatter data are available as a georeferenced TIFF image. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).

Info
Bathymetry from multibeam echosounder data collected offshore of Point Buchon, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Point Buchon, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The bathymetry data are available as a georeferenced TIFF image.

Info
Seafloor character offshore of Point Buchon, California

Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Point Buchon, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised numerical classification of the MBES data. The seafloor character raster is provided as a 2-meter resolution GeoTIFF.

Info
Multibeam acoustic-backscatter data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA

These metadata describe acoustic-backscatter collected during a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The acoustic-backscatter data are provided as a GeoTIFF.

Info
Multibeam bathymetry data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA

These metadata describe bathymetry collected during a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The bathymetry data are published here as a 32-bit GeoTIFF image.

Info
Navigation tracklines from a 2015 multibeam survey near Cross Sound, southeast Alaska, during field activity 2015-629-FA

These metadata describe navigation tracklines from a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The trackline data are provided as a GIS shapefile.

Info
Multibeam acoustic-backscatter data collected in 2017 and 2018 of Noyes Submarine Canyon and vicinity, southeast Alaska

These metadata describe acoustic-backscatter data collected during 2017 and 2018 multibeam echosounder surveys of Noyes Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The acoustic-backscatter data are provided as a GeoTIFF image.

Info
Multibeam bathymetry data collected in 2017 and 2018 of Noyes Submarine Canyon and vicinity, southeast Alaska

These metadata describe bathymetry data collected during 2017 and 2018 multibeam echosounder surveys of Noyes Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects.

Info
Ship navigation tracklines from a 2017 multibeam survey near Noyes Submarine Canyon, southeast Alaska

These metadata describe ship navigation tracklines from a 2017 multibeam echosounder survey near Noyo Submarine Canyon and Dixon Entrance, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile.

Info
Ship navigation tracklines from a 2018 multibeam survey near Noyes Submarine Canyon, southeast Alaska

These metadata describe ship navigation tracklines from a 2018 multibeam echosounder survey near Noyo Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile.

Info
Multibeam backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 8-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)

Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to June 11, 2016. Data were collected aboard the Alaska Department of Fish and Game research vessel Medeia using a Reson SeaBat 7160 multibeam echosounder. This data release contains approximately 453 square kilometers of multibeam bathymetric and backscatter data gridded at 10-meter resolution. Multibeam water column imagery and seismic profile data also collected during this survey are not published in this data release

Info
Trackline navigation collected with a Reson 7160 Multibeam echosounder in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA (Esri polyline shapefile, UTM 8 WGS 84)

Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to June 11, 2016. Data were collected aboard the Alaska Department of Fish and Game research vessel Medeia using a Reson SeaBat 7160 multibeam echosounder. This data release contains approximately 453 square kilometers of multibeam bathymetric and backscatter data gridded at 10-meter resolution. Multibeam water column imagery and seismic profile data also collected during this survey are not published in this data release

Info
Multibeam bathymetric data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)

Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to June 11, 2016. Data were collected aboard the Alaska Department of Fish and Game research vessel Medeia using a Reson SeaBat 7160 multibeam echosounder. This data release contains approximately 453 square kilometers of multibeam bathymetric and backscatter data gridded at 10-meter resolution. Multibeam water column imagery and seismic profile data also collected during this survey are not published in this data release

Info
A bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (30-meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)

This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary polygon shapefile records the extent of each source survey in the output grid.

Info
Polygon shapefile of data sources used to create a bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (Esri polygon shapefile, UTM 8 WGS 84)

This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary polygon shapefile records the extent of each source survey in the output grid.

Info
Acoustic-backscatter data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA

1-m resolution acoustic-backscatter data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m acoustic-backscatter data are provided as a GeoTIFF file.

Info
Bathymetry data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA

1-m resolution bathymetry data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m bathymetry data are provided as a GeoTIFF file.

Info
Profiles of salinity, temperature, depth, turbidity, and distributions of particle size in suspension collected during four days in South San Francisco Bay, California, June 2021 to January 2022

Profiles of salinity, temperature, turbidity, and particle size distribution were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center in South San Francisco Bay. Data were collected at depth intervals ranging between 0.5 and 2 m (depending on total water depth); sensors remained at each depth for 1-2 minutes. Each profile was collected from surface to bed, and the near-surface region was sampled again at the end of the profile to check steady-state conditions. Profiles were collected on 4 days: June 22, July 21, and December 3 of 2021, and on January 4, 2022 (UTC). Data files are grouped by season (summer or winter) and by instrument (CTD or LISST). No LISST data were collected in the winter. Users are advised to assess data quality carefully.

Info
Hydrodynamic time-series data from Whale's Tail South marsh in Eden Landing Ecological Reserve in Alameda County, CA in 2021 and 2022

Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center in South San Francisco Bay and in the Whale's Tail South marsh in Eden Landing Ecological Reserve in Alameda County, CA in 2021 and 2022. Data files are grouped by data type and season (summer and winter). At Bay sites, instruments were deployed on small quadpods. In the tidal creek, instruments were attached to grates mounted directly on the sediment bed. Marsh sites consisted of one transect of six stations perpendicular to the bay-marsh interface, and a second transect perpendicular to a tidal creek. Note that marsh stations were positioned fairly high in the tidal frame (close to the mean higher-high water elevation), so they were inundated less than 10 percent of the time. Instruments at the Bay stations were inundated most of the time but were subaerial at low tide. Data are only valid when the instruments were submerged. Users are advised to assess data quality carefully, and to check metadata for instrument information, as platform deployment times and data-processing methods varied.

Info
Bathymetry and seafloor acoustic backscatter of mobile subaqueous sand dunes in the lower Columbia River, Washington and Oregon, 2021

Bathymetry and seafloor acoustic backscatter data were collected at four sites (SKM, SLG, LDB, WLW) using a SWATHPlus interferometric sonar (234 kHz) pole mounted to the R/V Parke Snavely during a June 2021 survey of the lower Columbia River, Washington and Oregon. Each site was surveyed repeatedly between June 5 and June 9, 2021 to quantify bathymetric changes resulting from migration of subaqueous sand dunes. The bathymetry and seafloor acoustic backscatter data from each site are provided as GeoTIFF images.

Info
Acoustic backscatter intensity from multibeam echosounder data collected offshore of the Eel River, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of the Eel River, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab. The acoustic backscatter data are available as a georeferenced TIFF image. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).

Info
Bathymetry from multibeam echosounder data collected offshore of the Eel River, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of the Eel River, California, map area. Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Seafloor character offshore of the Eel River, California

Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of the Eel River, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised numerical classification of the MBES data. The seafloor character raster is provided as a 2-meter resolution GeoTIFF.

Info
Polygon shapefile of data sources used to create a composite multibeam bathymetry surface of the central Cascadia Margin offshore Oregon

Data from various sources, including 2018 and 2019 multibeam bathymetry data collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) were combined to create a composite 30-m resolution multibeam bathymetry surface of central Cascadia Margin offshore Oregon. These metadata describe the polygon shapefile that outlines and identifies each publicly available bathymetric dataset. The data are available as a polygon shapefile.

Info
Composite multibeam bathymetry surface of the central Cascadia Margin offshore Oregon

Data from various sources, including 2018 and 2019 multibeam bathymetry data collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) were combined to create a composite 30-m resolution multibeam bathymetry surface of central Cascadia Margin offshore Oregon. The data are available as a geoTIFF file.

Info
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Cape Mendocino, California

This 2-m-resolution acoustic backscatter data for the Offshore of Cape Mendocino, California, map area is part of USGS Data Series 781 (Golden, 2019). Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab. The acoustic backscatter data are available as a georeferenced TIFF image. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).

Info
Bathymetry from multibeam echosounder data collected offshore of Cape Mendocino, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Cape Mendocino, California, map area. Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Seafloor character offshore of Cape Mendocino, California

Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Cape Mendocino, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised numerical classification of the MBES data. The seafloor character raster is provided as a 2-meter resolution GeoTIFF.

Info
Swath acoustic-backscatter data collected in 2013 off the islands of Maui and Kaho`olawe, Hawaii, during field activity A-01-13-HW

1-m resolution acoustic-backscatter data were collected during a February 2013 SWATHPlus survey offshore of the Hawaiian Islands of Maui and Kaho`olawe. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), with fieldwork activity number A-01-13-HW. The 1-m backscatter data are provided as a GeoTIFF file.

Info
Swath bathymetry data collected in 2013 off the islands of Maui and Kaho`olawe, Hawaii, during field activity A-01-13-HW

1-m resolution bathymetry data were collected during a February 2013 SWATHPlus survey offshore of the Hawaiian Islands of Maui and Kaho`olawe. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), with fieldwork activity number A-01-13-HW. The 1-m bathymetry data are provided as a GeoTIFF file.

Info
Survey tracklines along which bathymetric data were collected with a SEA Ltd., SWATHplus-H interferometric sonar with in the Barnegat Bay, New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri polyline shapefile, Geographic, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), and a subbottom profiler for imaging sediment layers beneath the floor of the estuary. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
Locations of photographs acquired using a SEABed Observation and Sampling System (SEABOSS) within Barnegat Bay New Jersey by the U.S. Geological Survey in 2012, and 2013 (Esri point shapefile, Geographic, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS)in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
One meter mosaic of acoustic backscatter data acquired using an EdgeTech 4200 and Klein 3000 sidescan sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (GeoTIFF image, UTM 18N, WGS 84)

In 2011, the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is flushed by only three inlets and is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macro algae, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes establishing the regional geology, its physical characteristics, and modeling how the estuary's morphology interacts to affect its water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the sea floor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring sea floor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about sea floor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. More information about the individual surveys conducted as part of the Barnegat Bay Project can be found on the Woods Hole Coastal and Marine Science Center Field activity webpages: 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
Survey tracklines along which backscatter data were collected with a Klein 3000, EdgeTech 4200 sidescan sonar and a SEA Ltd., SWATHplus-H interferometric sonar with in Barnegat Bay, New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri polyline shapefile, Geographic, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), and a subbottom profiler for imaging sediment layers beneath the floor of the estuary. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
One meter mosaic of acoustic backscatter data acquired using a SWATHplus-H interferometric sonar in Barnegat and Little Egg Inlets, New Jersey by the U.S. Geological Survey in 2012, and 2013 (GeoTIFF image, UTM 18N, WGS 84)

In 2011, the US Geological Survey in partnership with the New Jersey Department of Environmental Protection began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is flushed by only three inlets and is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macro algae, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes establishing the regional geology, its physical characteristics, and modeling how the estuary's morphology interacts to affect its water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. More information about the individual surveys conducted as part of the Barnegat Bay Project can be found on the Woods Hole Coastal and Marine Science Center Field activity webpages: 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
Tracklines for bottom video collected using the MINI-SEABOSS sampler in Barnegat Bay, NJ by the U.S. Geological Survey during 3 surveys in 2012 and 2013 (Esri polyline shapefile, Geographic, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
Sediment sample locations and grain size results from samples collected in Barnegat Bay, NJ by the U.S. Geological Survey during 3 surveys in 2012 and 2013 (Esri point shapefile, Geographic, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
Seismic shots at 100 shot intervals collected using an EdgeTech 424 chirp seismic-reflection data by the U.S. Geological Survey in the Barnegat Bay, NJ in 2011, 2012, and 2013 (Esri point shapefile, Geographic, WGS 84).

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, data were collected with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), and a subbottom profiler for imaging sediment layers beneath the floor of the estuary. More information at about the individual USGS surveys conducted as part of this study can be found on Woods Hole Coastal and Marine Science Center Field Activity webpages: 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
Survey lines along which EdgeTech 424 chirp seismic-reflection data were collected by the U.S. Geological Survey in the Barnegat Bay, NJ in 2011, 2012, and 2013 (Esri polyline shapefile, Geographic, WGS 84).

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, data were collected with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), and a subbottom profiler for imaging sediment layers beneath the floor of the estuary. More information about the individual USGS surveys conducted as part of this study can be found on Woods Hole Coastal and Marine Science Center Field Activity webpages: 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA >2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA >2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA >2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
2 meter Arc Raster grid of bathymetry acquired using a SEA Ltd. SWATHplus-H interferometric sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the sea floor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring sea floor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about sea floor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. More information about the four surveys that were part of this project can be found at the USGS Woods Hole Coastal and Marine Science Center Field Activity web pages: 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
10 meter bathymetric grid of Barnegat Bay, New Jersey produced from trackline bathymetry collected by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS)in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
2 meter Arc Raster grid of bathymetry acquired along cross lines using a SEA Ltd. SWATHplus-H interferometric sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
One meter mosaic of acoustic backscatter data acquired using an EdgeTech 4200 sidescan sonar within Little Egg Harbor (Barnegat Bay) New Jersey by the U.S. Geological Survey in 2013 (GeoTIFF image, UTM 18N, WGS 84)

In 2011, the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is flushed by only three inlets and is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macro algae, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes establishing the regional geology, its physical characteristics, and modeling how the estuary's morphology interacts to affect its water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, they collected data with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), subbottom profiler for imaging sediment layers beneath the floor of the estuary, and sediment samples with bottom photographs for ground validation of the acoustic data. More information about the individual surveys conducted as part of the Barnegat Bay Project can be found on the Woods Hole Coastal and Marine Science Center Field activity webpages: 2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA 2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA 2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA 2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
PNG formatted images of EdgeTech 424 seismic-reflection profiles collected by the U.S. Geological Survey in Barnegat Bay, NJ in 2011, 2012, and 2013

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, seaweed, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a multidisciplinary approach that includes characterizing its physical characteristics (for example, depth, magnitude and direction of tidal currents, distribution of seafloor and subseafloor sediment) and modeling how the physical characteristics interact to affect the estuary's water quality. Scientists from USGS Coastal and Marine Geology Program offices in Woods Hole, Massachusetts, and St. Petersburg, Florida, began mapping the seafloor of the Barnegat Bay-Little Egg Harbor estuary in November 2011 and completed in September 2013. With funding from the New Jersey Department of Environmental Protection and logistical support from the USGS New Jersey Water Science Center, data were collected with a suite of geophysical tools, including swath bathymetric sonar for measuring seafloor depth, a sidescan sonar for collecting acoustic-backscatter data (which provides information about seafloor texture and sediment type), and a subbottom profiler for imaging sediment layers beneath the floor of the estuary. More information about the individual USGS surveys conducted as part of this study can be found on Woods Hole Coastal and Marine Science Center Field Activity webpages: >2011-041-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-041-FA >2012-003-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2012-003-FA >2013-014-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-014-FA >2013-030-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2013-030-FA

Info
USGS Seafloor Mapping ALPH 98013 Water Gun Data offshore of the New York - New Jersey metropolitan area, collected in 1998

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
USGS Seafloor Mapping ATSV 99044 Chirp Data off Myrtle Beach, South Carolina

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ATSV 99044 cruise. The coverage is the nearshore of the northern South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
Archive of Datasonics SIS-1000 Boomer and Sparker Subbottom Data Collected During USGS Cruise DIAN 97011 Long Island, NY Inner Shelf

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Sea floor maps showing topography, sun-illuminated topographic imagery, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts

This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.

Info
High-resolution multichannel seismic-reflection data acquired in the northern Gulf of Mexico, 1998-99

This report consists of two-dimensional marine seismic reflection profile data from the northern Gulf of Mexico. These data were acquired in 1998 and 1999 with the Research Vessels Tommy Munro (M1-98-GM) and Gyre (G1-99-GM). The data are available in binary and GIF image formats. Binary data are in Society of Exploration Geologists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your Web browser.

Info
10-meter bathymetric contours from multibeam bathymetry in the East and West Flower Garden regions, northwestern Gulf of Mexico outer shelf (polyline shapefile)

This shapefile shows the 10 meter contour interval based on the 5-meter multibeam bathymetry (Dartnell and Gardner, 1999) from the Flower Garden Banks region.

Info
Boundary of East Flower Garden Bank, northwestern Gulf of Mexico outer shelf

This shapefile is the polygon delineating the boundary of the East Flower Garden Bank of the Flower Graden Banks National Marine Sanctuary.

Info
Sea-floor interpretation of the East Flower Garden Region, northwestern Gulf of Mexico outer shelf (ef_interp)

Seafloor bottom type interpretation of the East Flower Garden Bank portion of the Flower Garden Banks NMS based on sediment samples and the mulitbeam backscatter and bathymetry. (Polygon Shapefile)

Info
Boundary of Stetson Bank of the Flower Garden Banks National Marine Sanctuary, northwestern Gulf of Mexico outer shelf

This shapefile is the polygon delineating the boundary of Stetson Bank of the Flower Garden Banks National Marine Sanctuary.

Info
Boundary of West Flower Garden Bank, northwestern Gulf of Mexico outer shelf

This shapefile is the polygon delineating the boundary of the West Flower Garden Bank of the Flower Graden Banks National Marine Sanctuary.

Info
Sea-floor interpretation of the West Flower Garden Region, northwestern Gulf of Mexico outer shelf (wf_interp)

Seafloor bottom type interpretation of the West Flower Garden Bank portion of the Flower Garden Banks NMS based on sediment samples and the mulitbeam backscatter and bathymetry. (Polygon Shapefile)

Info
Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Grab Sample Data (GRABS)

Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from hundreds of years to hundreds of thousands of years. This research relates to a variety of human concerns, including water usage in the Bear River basin. Past work has included several coring operations, a seismic-reflection survey, sediment-trap deployments, a barge-mounted drilling operation with the GLAD800 drill rig, and a variety of other studies. The objectives of the September, 2002 operations, preliminarily reported here, were (1) to compile a detailed bathymetric map of the lake using swath-mapping techniques, in order to provide baseline data for a variety of applications and studies, and (2) to complete a sidescan-sonar survey of the lake, providing a nearly complete acoustic image of the lake floor. Limited amounts of subbottom acoustic-reflection data (CHIRP) were also collected, along with samples of lake-floor sediments representative of different kinds of backscatter patterns. These surveys followed an earlier subbottom acoustic-reflection survey (1997), using boomer and 3.5 kHz systems (S. M. Colman, unpublished data).

Info
Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - JPEG Images of Grab Samples

Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from hundreds of years to hundreds of thousands of years. This research relates to a variety of human concerns, including water usage in the Bear River basin. Past work has included several coring operations, a seismic-reflection survey, sediment-trap deployments, a barge-mounted drilling operation with the GLAD800 drill rig, and a variety of other studies. The objectives of the September, 2002 operations, preliminarily reported here, were (1) to compile a detailed bathymetric map of the lake using swath-mapping techniques, in order to provide baseline data for a variety of applications and studies, and (2) to complete a sidescan-sonar survey of the lake, providing a nearly complete acoustic image of the lake floor. Limited amounts of subbottom acoustic-reflection data (CHIRP) were also collected, along with samples of lake-floor sediments representative of different kinds of backscatter patterns. These surveys followed an earlier subbottom acoustic-reflection survey (1997), using boomer and 3.5 kHz systems (S. M. Colman, unpublished data).

Info
Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - JPEG Images of Sound Velocity Profiles

Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from hundreds of years to hundreds of thousands of years. This research relates to a variety of human concerns, including water usage in the Bear River basin. Past work has included several coring operations, a seismic-reflection survey, sediment-trap deployments, a barge-mounted drilling operation with the GLAD800 drill rig, and a variety of other studies. The objectives of the September, 2002 operations, preliminarily reported here, were (1) to compile a detailed bathymetric map of the lake using swath-mapping techniques, in order to provide baseline data for a variety of applications and studies, and (2) to complete a sidescan-sonar survey of the lake, providing a nearly complete acoustic image of the lake floor. Limited amounts of subbottom acoustic-reflection data (CHIRP) were also collected, along with samples of lake-floor sediments representative of different kinds of backscatter patterns. These surveys followed an earlier subbottom acoustic-reflection survey (1997), using boomer and 3.5 kHz systems (S. M. Colman, unpublished data).

Info
JPEG image of Seismic-Reflection Profiles Collected in the Pulley Ridge Study Area in 1996 and 2001

These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development.

Info
RES2DINV Format Continuous Resistivity Profiles Collected in the Neuse River, May3, 2005

The Neuse River Estuary in North Carolina is a broad, V-shaped water body located on the southwestern end of Pamlico Sound. This estuary suffers from severe eutrophication for which several water quality models have recently been developed to aid in the management of nutrient loading to the estuary. In an effort to help constrain model estimates of the fraction of nutrients delivered by direct ground-water discharge, continuous resistivity profile (CRP) measurements were made during the spring of 2004 and 2005. CRP is used to measure electrical resistivity of sediments, a property that is sensitive to difference in salinity of submarine ground water. The 2004 and 2005 surveys used floating resistivity streamers of 100 m and 50 m respectively. The depth penetration of the streamers is approximately 20% of the streamer length which translates to approximately 20-25 m with the 100 m streamer and 12-14 m with the 50 m streamer. These data were processed using AGI's EarthImager 2D software. CRP data enables the mapping of the extent and depth of the fresher ground water within the estuary.

Info
Shapefile for Coastal Zone Management Program counties of the United States and its territories, 2009 (CZMP_counties_2009.shp)

Shapefile for 492 Coastal Zone Management Program (CZMP) counties and county equivalents, 2009, extracted from the U.S. Census Bureau's MAF/TIGER database of U.S. counties and cross-referenced to a list of CZMP counties published by the NOAA/NOS Office of Ocean and Coastal Resource Management (OCRM). Data extent to the nearest quarter degree is 141.00 E to 64.50 W longitude and 14.75 S to 71.50 N latitude. TL2009 in this document refers to metadata content inherited from the original U.S. Census Bureau (2009) TIGER/Line shapefile. TL2009: The TIGER/Line Shapefiles are an extract of selected geographic and cartographic information from the Census MAF/TIGER database. The Census MAF/TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each TIGER/Line Shapefile is designed to stand alone as an independent dataset or the shapefiles can be combined to cover the whole nation.

Info
Polygons of global undersea features for geographic searches

A shapefile of 311 undersea features from all major oceans and seas has been created as an aid for retrieving georeferenced information resources. Version 1.1 of the data set also includes a linked data representation of 299 of these features and their spatial extents. The geographic extent of the data set is 0 degrees E to 0 degrees W longitude and 75 degrees S to 90 degrees N latitude. Many of the undersea features (UF) in the shapefile were selected from a list assembled by Weatherall and Cramer (2008) in a report from the British Oceanographic Data Centre (BODC) to the General Bathymetric Chart of the Oceans (GEBCO) Sub-Committee on Undersea Feature Names (SCUFN). Annex II of the Weatherall and Cramer report (p. 20-22) lists 183 undersea features that "may need additional points to define their shape" and includes online links to additional BODC documents providing coordinate pairs sufficient to define detailed linestrings for these features. For the first phase of the U.S. Geological Survey (USGS) project, Wingfield created polygons for 87 of the undersea features on the BODC list, using the linestrings as guides; the selected features were primarily ridges, rises, trenches, fracture zones, basins, and seamount chains. In the second phase of the USGS project, Wingfield and Hartwell created polygons for an additional 224 undersea features, mostly basins, abyssal plains, and fracture zones. Because USGS is a Federal agency, the attribute tables follow the conventions of the National Geospatial-Intelligence Agency (NGA) GEOnet Names Server (http://geonames.nga.mil/gns/html/).

Info
Swath bathymetry 13-m-cell-size grid of quadrangle 6 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the Frederick G. Creed from 1994-1996 (custom Mercator projection, NAD 83, Esri binary grid format)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Substrate types are defined on the basis of sediment grain-size composition, surficial morphology, sediment layering, and the mobility or immobility of substrate surfaces. This map series is intended to portray the major geological elements (substrates, features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

Info
Polyline shapefile of a portion of the 1-meter (m) contours in quadrangle 6 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts necessary to show small features not displayed by 5-m contours - based on bathymetry data collected by the U.S. Geological Survey from 1994-1996 (Geographic, NAD 83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Substrate types are defined on the basis of sediment grain-size composition, surficial morphology, sediment layering, and the mobility or immobility of substrate surfaces. This map series is intended to portray the major geological elements (substrates, features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

Info
Polygon shapefile of the interpretation of the seabed geologic substrates in quadrangle 6 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2004 (Geographic, NAD 83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Substrate types are defined on the basis of sediment grain-size composition, surficial morphology, sediment layering, and the mobility or immobility of substrate surfaces. This map series is intended to portray the major geological elements (substrates, features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

Info
Point shapefile of quadrangle 6 station locations in Stellwagen Bank National Marine Sanctuary offshore of Boston, Massachusetts where video, photographs and sediment samples were collected by the U.S. Geological Survey from 1993-2004 - includes sediment sample analyses and interpreted geologic substrate (Geographic, NAD 83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Substrate types are defined on the basis of sediment grain-size composition, surficial morphology, sediment layering, and the mobility or immobility of substrate surfaces. This map series is intended to portray the major geological elements (substrates, features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

Info
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Arcata, California

This 2-m-resolution acoustic backscatter data for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Backscatter data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping. The acoustic backscatter data are available as a georeferenced TIFF image. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).

Info
Bathymetry from multibeam echosounder data collected offshore of Arcata, California

This 2-m-resolution bathymetry data for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Seafloor character offshore of Arcata, California

This seafloor character raster for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seafloor character is a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Arcata, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from the underwater video were translated into Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) induration classes to use as training for a supervised numerical classification of the MBES data. The seafloor character raster is provided as a 2-meter resolution GeoTIFF.

Info
Sediment thickness from seismic reflection data collected offshore of Arcata, California

This 100-m-resolution sediment thickness data raster for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seismic data were collected by the USGS in 2009 using a mini-sparker seismic systems installed on the Humboldt State University R/V Coral Sea. The data were processed by the USGS into segy format files. The data are available as a georeferenced TIFF image.

Info