Morgan, Karen L. M.

About the author


Baseline Northern Gulf of Mexico Oblique Photography Survey, February 7, 2012.

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On February 7, 2012, the USGS conducted an oblique aerial photographic survey from Pensacola, Fla., to Breton Islands, La., aboard a Piper Navajo Chieftain at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect baseline data for assessing ...

Info
Baseline Coastal Oblique Aerial Photographs Collected from Breton Island, Louisiana, to the Alabama-Florida Border, July 13, 2013.

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On July 13, 2013, the USGS conducted an oblique aerial photographic survey from Breton Island, Louisiana, to the Alabama-Florida border, aboard a Cessna 172 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect data for assessing incremental changes ...

Info
Baseline Coastal Oblique Aerial Photographs Collected from Dauphin Island, Alabama, to Breton Island, Louisiana, August 8, 2012

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On August 8, 2012, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a Cessna 172 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect data for assessing incremental changes since ...

Info
Post-Hurricane Sandy Oblique Photography Survey, November 04, 2012.

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On November 4-6, 2012, the USGS conducted an oblique aerial photographic survey from Cape Lookout, N.C., to Montauk, N.Y., aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect data for assessing incremental changes since ...

Info
Baseline coastal oblique aerial photographs collected from Key Largo, Florida, to the Florida/Georgia border, September 5-6, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 5-6, 2014, the USGS conducted an oblique aerial photographic survey from Key Largo, Florida, to the Florida/Georgia border aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0953/html/ds953_fig2.html). This mission was flown to ...

Info
Baseline coastal oblique aerial photographs collected from Key Largo, Florida, to the Florida/Georgia Border, September 5-6, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 5-6, 2014, the USGS conducted an oblique aerial photographic survey from Key Largo, Florida, to the Florida/Georgia Border, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2). This mission was flown to collect data for assessing incremental changes ...

Info
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 1, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 1, 2014, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana, aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0952/html/ds952_fig2.html). This survey was flown to ...

Info
Baseline coastal oblique aerial photographs collected from Owls Head, Maine, to the Virginia/North Carolina border, May 19-22, 2009

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On May 19-22, 2009, the USGS conducted an oblique aerial photographic survey from Owls Head, Maine, to the Virginia/North Carolina border, aboard a Cessna 207A aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0946/html/ds946_fig2.html). This mission was flown ...

Info
Baseline coastal oblique aerial photographs collected from the Virginia/North Carolina border to Montauk Point, New York, October 5-6, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On October 5-6, 2014, the USGS conducted an oblique aerial photographic survey from the Virginia/North Carolina border to Montauk Point, New York, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0958/html/ds958_fig2.html). This survey was ...

Info
Post-Hurricane Ivan coastal oblique aerial photographs collected from Crawfordville, Florida, to Petit Bois Island, Mississippi, September 17, 2004

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 17, 2004, the USGS conducted an oblique aerial photographic survey from Crawfordville, Florida, to Petit Bois Island, Mississippi, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0945/html/ds945_fig2.html). This ...

Info
Baseline coastal oblique aerial photographs collected from Calcasieu Lake, Louisiana, to Brownsville, Texas, September 9-10, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 9-10, 2008, the USGS conducted an oblique aerial photographic survey (during Field Activity Number [FAN] 08ACH05) from Calcasieu Lake, Louisiana, to Brownsville, Texas, aboard a Cessna C-210 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0991 ...

Info
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 18–19, 2015

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 18–19, 2015, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana (fig. 1, http://pubs.usgs.gov/ds/1008/downloads/maps/index.jpg), aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (fig. 2, http:/ ...

Info
Post-Hurricane Ike coastal oblique aerial photographs collected along the Alabama, Mississippi, and Louisiana barrier islands and the north Texas coast, September 14-15, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 14-15, 2008, the USGS conducted an oblique aerial photographic survey (during Field Activity Number (FAN) 08ACH06, http://cmgds.marine.usgs.gov/fan_info.php?fan=08ACH06) along the Alabama, Mississippi, and Louisiana barrier islands and the north Texas coast, aboard a Beechcraft Super King Air 200 aircraft at ...

Info
Post-Hurricane Irene coastal oblique aerial photographs collected from Ocracoke Inlet, North Carolina, to Virginia Beach, Virginia, August 30-31, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On August 30-31, 2011, the USGS conducted an oblique aerial photographic survey (during Field Activity Number [FAN] 11CCH04) from Ocracoke Inlet, North Carolina, to Virginia Beach, Virginia, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs ...

Info
Post-Hurricane Isaac coastal oblique aerial photographs collected along the Alabama, Mississippi, and Louisiana Barrier Islands, September 2-3, 2012

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 2-3, 2012, the USGS conducted an oblique aerial photographic survey (during Field Activity Number [FAN] 12CCH03) along the Alabama, Mississippi, and Louisiana barrier islands aboard a Cessna 172 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2, http://pubs.usgs.gov/ds ...

Info
Post-Hurricane Joaquin coastal oblique Aerial Photographs Collected from the South Carolina/North Carolina Border to Montauk Point, New York, October 7-9, 2015

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On October 7-9, 2015, the USGS conducted an oblique aerial photographic survey from South Carolina/North Carolina border to Montauk Point, New York, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0995/html/ds995_fig2.html). This mission ...

Info
Winter 2016, part A, coastal oblique aerial photographs collected from the South Carolina/North Carolina border to Assateague Island, Virginia, February 18-19, 2016

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On February 18-19, 2016, the USGS conducted an oblique aerial photographic survey from the South Carolina/North Carolina border to Assateague Island, Virginia, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (fig. 2, http://pubs.usgs.gov/ds/1029/html/ds1029_fig2.html). ...

Info
Winter 2016, part B: Coastal oblique aerial photographs collected from Assateague Island, Virginia, to Montauk Point, New York, March 8-9, 2016

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On March 8-9, 2016, the USGS conducted an oblique aerial photographic survey from Assateague Island, Virginia, to Montauk Point, New York, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (fig. 2, http://pubs.usgs.gov/ds/1030/html/ds1030_fig2.html). This mission was ...

Info
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, June 9, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On June 9, 2011, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a Beechcraft BE90 King Air aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (fig. 2, http://pubs.usgs.gov/ds/1044/html/ds1044_fig2.html). This mission was ...

Info
Post-Hurricane Katrina coastal oblique aerial photographs collected from Panama City, Florida, to Lakeshore, Mississippi, and the Chandeleur Islands, Louisiana, August 31, 2005

The U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards project, conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On August 31, 2005, the USGS conducted an oblique aerial photographic survey from Panama City, Florida, to Lakeshore, Mississippi, and the Chandeleur Islands, Louisiana, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and ...

Info
Post-Hurricane Matthew coastal oblique aerial photographs collected from Port St. Lucie, Florida, to Kitty Hawk, North Carolina, October 13–15, 2016

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On October 13–15, 2016, the USGS conducted an oblique aerial photographic survey from Port St. Lucie, Florida, to Kitty Hawk, North Carolina, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes ...

Info
Baseline coastal oblique aerial photographs collected at the Chandeleur Islands, Louisiana, and Dauphin Island, Alabama, July 24, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On July 24, 2010, the USGS conducted an oblique aerial photographic survey at the Chandeleur Islands, Louisiana, and Dauphin Island, Alabama, aboard a Beechcraft BE90 King Air aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected from Ponte Vedra, Florida, to the South Carolina/North Carolina border, August 24, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On August 24, 2011, the USGS conducted an oblique aerial photographic survey from Ponte Vedra, Florida, to the South Carolina/North Carolina border, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected at Breton Island and the Chandeleur Islands, Louisiana, January 22, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On January 22, 2011, the USGS conducted an oblique aerial photographic survey at Breton Island and the Chandeleur Islands, LA, aboard a Cessna 210 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the beach and ...

Info
Baseline coastal oblique aerial photographs collected from Breton Island to the Chandeleur Islands, Louisiana, September 3, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 3, 2010, the USGS conducted an oblique aerial photographic survey from Breton Island to the Chandeleur Islands, Louisiana, aboard a Cessna 210 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the ...

Info
Baseline Coastal oblique aerial photographs collected from Horseshoe Beach, Florida, to East Cape, Florida, May 19-20, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On May 19-20, 2010, the USGS conducted an oblique aerial photographic survey from Horseshoe Beach, Florida, to East Cape, Florida, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes ...

Info
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 7, 2016

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 7, 2016, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana, aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the ...

Info
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, July 26–27, 2007

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On July 26-27, 2007, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Post-Hurricane Gustav coastal oblique aerial photographs collected from the Chandeleur Islands, Louisiana, to Isles Dernieres Barrier Islands Refuge, Louisiana, September 4, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 4, 2008, the USGS conducted an oblique aerial photographic survey from the Chandeleur Islands, Louisiana, to Isles Dernieres Barrier Islands Refuge, Louisiana, aboard a Beechcraft Super King Air 200 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted ...

Info
Baseline coastal oblique aerial photographs collected from Tampa Bay to the Marquesas Keys, Florida, June 22–23, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 22–23, 2010, the USGS conducted an oblique aerial photographic survey from Tampa Bay to the Marquesas Keys, Florida, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in ...

Info
iCoast - Did the Coast Change? Crowd-sourced Coastal Classifications

On October 29, 2012, Hurricane Sandy made landfall as a post-tropical storm near Brigantine, New Jersey, with sustained winds of 70 knots (80 miles per hour) and tropical-storm-force winds extending 870 nautical miles in diameter (Blake and others, 2013). The effects of Hurricane Sandy’s winds and storm surge included erosion of the beaches and dunes as well as breaching of barrier islands in both natural and heavily developed areas of the coast (Spokin et. al., 2014). On November 4-6, 2012, the U.S. ...

Info
Baseline coastal oblique aerial photographs collected U.S. Army Corps of Engineers Field Research Facility, Duck, North Carolina, June 9, 2017

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 09, 2017, the USGS conducted an oblique aerial photographic survey of the U.S. Army Corps of Engineers Field Research Facility (USACE FRF), located in Duck, North Carolina, aboard a Cessna 182 aircraft at an altitude of approximately 1000 feet (ft). This mission was conducted to collect data for USACE FRF ...

Info
Baseline coastal oblique aerial photographs collected from Dog Island, Florida, to Breton Island, Louisiana, June 24–25, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 24–25, 2008, the USGS conducted an oblique aerial photographic survey from Dog Island, Florida, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental ...

Info
Baseline coastal oblique aerial photographs collected from Fenwick Island State Park, Delaware, to Corolla, North Carolina, March 27, 1998

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On March 27, 1998, the USGS conducted an oblique aerial photographic survey from Fenwick Island State Park, Delaware, to Corolla, North Carolina, aboard a U.S. Coast Guard HH60 Helicopter at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected from False Cape State Park, Virginia, to Myrtle Beach, South Carolina, May 6, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On May 6, 2008, the USGS conducted an oblique aerial photographic survey from False Cape State Park, Virginia, to Myrtle Beach, South Carolina, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission (08CH01) was conducted to collect data ...

Info
Baseline coastal oblique aerial photographs collected from the Harney River, Everglades National Park, Florida to Anclote Key, Florida, November 14, 2006

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On November 14, 2006, the USGS conducted an oblique aerial photographic survey from the Harney River, Everglades National Park, Florida to Anclote Key, Florida, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect ...

Info
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, September 26–27, 2006

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 26-27, 2006, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected from Navarre, Florida, to the Chandeleur Islands, Louisiana, and from Grand Point, Alabama, to St. Joseph Point, Mississippi, June 6, 2006

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 6, 2006, the USGS conducted an oblique aerial photographic survey from Navarre, Florida, to the Chandeleur Islands, Louisiana, and from Grand Point, Alabama, to St. Joseph Point, Mississippi, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore ...

Info
Archive of Post-Hurricane Charley Coastal Oblique Aerial Photographs Collected during USGS Field Activity 04CCH01 from Marco Island to Fort DeSoto, Florida, August 15, 2004

On August 15, 2004, the U.S. Geological Survey (USGS) conducted an aerial survey off the southwest coast of Florida, starting in the south at Marco Island to Fort DeSoto in the north. These data along with Experimental Advanced Airborne Research Lidar (EAARL) coastal topographic and bathymetric data collected on August 16, 2004 (Bonisteel and others, 2009), will be used to detect coastal changes such as beach erosion and overwash caused by Hurricane Charley. These data will also be used to track future ...

Info
Archive of Post-Hurricane Isabel Coastal Oblique Aerial Photographs Collected during USGS Field Activity 03CCH01 from Ocean City, Maryland, to Fort Caswell, North Carolina, and Inland from Waynesboro to Redwood, Virginia, September 21 - 23, 2003

On September 21 - 23, 2003, the U.S. Geological Survey (USGS) conducted an aerial survey along the Atlantic coast, from Ocean City, Maryland, to Fort Caswell, North Carolina, and inland from Waynesboro to Redwood, Virgina. These photos were used to document coastal changes such as beach erosion and overwash caused by Hurricane Isabel and to identify potential landslide areas inland. They may also be used as baseline data for future surveys. The USGS and the National Aeronautics and Space Administration ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
Ground Control Point Locations and Photographs From North Topsail Beach and Camp Lejeune, North Carolina, June 2019

Scientist from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected xyz locations for 53 Ground Control Points (GCP) in North Topsail Beach and within the Camp Lejeune Marine Corps Base, North Carolina, June 12-14, 2019. During this study, Global Positing System (GPS) data were collected using a single Spectra SP80 Global Navigation Satellite System (GNSS) receiver affixed to a 2-meter (m) survey pole. Additional attributes pertaining to each survey point ...

Info
Time Series of Aerial Imagery from Small Unmanned Aircraft Systems and Associated Ground Control Points: Madeira Beach, Florida, July 2017 to June 2018 (Aerial Imagery)

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCPs) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data consisting of aerial ...

Info
Time Series of Aerial Imagery from Small Unmanned Aircraft Systems and Associated Ground Control Points: Madeira Beach, Florida, July 2017 to June 2018 (Surveyed GCPs)

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCPs) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data consisting of aerial ...

Info
Time Series of Structure-from-Motion Products - Digital Elevation Models: Madeira Beach, Florida, July 2017 to June 2018

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of DEMs ...

Info
Time Series of Structure-from-Motion Products - Orthomosaics: Madeira Beach, Florida, July 2017 to June 2018

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ...

Info
Time Series of Structure-from-Motion Products - Point Clouds: Madeira Beach, Florida, July 2017 to June 2018

Aerial imagery acquired with a small unmanned aircraft system (sUAS), in conjunction with surveyed ground control points (GCP) visible in the imagery, can be processed with structure-from-motion (SfM) photogrammetry techniques to produce high-resolution orthomosaics, three-dimensional (3D) point clouds and digital elevation models (DEMs). This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides UAS survey data products consisting of ...

Info
New Jersey Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for New Jersey for data collected at various times between 2007 and 2014.

Info
New Jersey raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for New Jersey for data collected at various times between 2007 and 2014

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: South Carolina through New Hampshire Update

This data set contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the United States coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to ...

Info
2005-2006 Atlantic Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005-2006 Atlantic Coast ...

Info
2007 Northeast Barrier Islands USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Northeast Barrier ...

Info
2008 Assateague Island USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Assateague Island ...

Info
2009 Cape Canaveral USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Cape Canaveral ...

Info
2009 Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Florida U.S. Army ...

Info
2009 North Carolina USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 U.S. Army Corps of ...

Info
2009 Post-Nor’Ida USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Post-Nor’Ida USGS ...

Info
2010 Assateague Island National Seashore USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Assateague Island ...

Info
2010 Delaware USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Delaware U.S. Army ...

Info
2010 Maryland USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Maryland U.S. Army ...

Info
2010 New Jersey USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New Jersey U.S. ...

Info
2010 New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New York U.S. Army ...

Info
2010 Northeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Northeast Atlantic ...

Info
2010 Southeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Southeast Atlantic ...

Info
2010 Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Virginia U.S. Army ...

Info
2012 Post-Hurricane Sandy Fire Island, New York Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy New Jersey USGS EAARL-B Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Northeast Atlantic Coast USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post ...

Info
2012 Pre-Hurricane Sandy Fire Island National Seashore, USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2016 Florida East Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ...

Info
2013-2014 Northeast USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013-2014 Post� ...

Info
2007 South Florida FDEM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Florida Division of ...

Info
2012 Post-Hurricane Sandy Long Island, New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2014 Post-Hurricane Sandy SC to NY NOAA NGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
1998 MA, NY, MD, and VA USGS/NASA ATM2 Lidar-derived dune crest, toe and shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2005 East Coast (DE, MD, NJ, NY, NC, and VA) USACE NCMP Topobathy Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2016 Massachusetts NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2016 USACE Post-Hurricane Matthew Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2017 Florida West Coast NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches.Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Alabama and Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 East Coast (NC) USACE NCMP Topobathy Lidar Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 East Coast (VA, NC, SC) USACE NCMP Post-Florence Topobathy Lidar-Derived Dune Crest, Toe, and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Mississippi and Alabama USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Puerto Rico USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2019 North Carolina and Virginia Post-Dorian USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2019 North Carolina and Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (L=lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2020 New Jersey and New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2020 New Jersey USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2021 New York State Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
2022 New Jersey and New York USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
2001 Gulf Coast USGS/NASA ATM Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2017 Georgia through New York USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info