Mapping

in addition to traditional cartographic methods, this term is used for all field activities that document spatial relationships of scientific interest.
Subtopics:
Geologic mapping (29 items)

430 results listed by similarity [list alphabetically]
Chirp sub-bottom data of USGS field activity 2018-645-FA collected in the Santa Barbara Channel in July of 2018

High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey in July of 2018 between Point Conception and Coal Oil Point in the Santa Barbara Channel, California. Data were collected aboard the USGS R/V Parke Snavely during field activity 2018-645-FA, using an EdgeTech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.

Info
Multichannel minisparker seismic-reflection data of USGS field activity 2018-645-FA collected in the Santa Barbara Channel in July of 2018

High-resolution multichannel minisparker seismic-reflection data were collected by the U.S. Geological Survey in July of 2018 between Point Conception and Coal Oil Point in the Santa Barbara Channel, California. Data were collected aboard the USGS R/V Parke Snavely during field activity 2018-645-FA, using SIG 2-mille minisparker and recorded using an 8-channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location.

Info
Reprocessed multichannel seismic-reflection (MCS) data from USGS field activity T-1-96-SC collected in San Diego Bay, California in 1996

This data release presents reprocessed multichannel seismic-reflection (MCS) data that was originally collected in 1996 in partnership with the California Division of Mines and Geology and Caltrans as part of a seismic hazard assessment of the Coronado Bridge in San Diego Bay, California. The original survey collected 130 km of data with a 14-cubic inch sleeve-gun (airgun) source, a 24-channel streamer, and 3.125 m shot spacing. Reprocessed profiles show increased data resolution, with data recorded to 750 ...

Info
Repeat high-resolution acoustic-backscatter datasets collected between 2014 and 2016 of a field of crescent-shaped rippled scour depressions in northern Monterey Bay, California

Between November 2014 and June 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center (PCMSC) conducted eight repeat, high-resolution bathymetry and acoustic-backscatter surveys of a small patch of seafloor offshore Santa Cruz in northern Monterey Bay, California. PCMSC also collected oceanographic time-series data over the same two-year period. This metadata file describes the eight acoustic-backscatter datasets.

Info
Repeat high-resolution bathymetry datasets collected between 2014 and 2016 of a field of crescent-shaped rippled scour depressions in northern Monterey Bay, California

Between November 2014 and June 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center (PCMSC) conducted eight repeat, high-resolution bathymetry and acoustic-backscatter surveys of a small patch of seafloor offshore Santa Cruz in northern Monterey Bay, California. PCMSC also collected oceanographic time-series data over the same two-year period. This metadata file describes the eight bathymetry datasets.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ...

Info
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ...

Info
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ...

Info
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution.

Info
Shaded-relief image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic, resampled to 1-meter resolution, and merged with lidar bathymetry data to produce the shaded-relief image.

Info
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Chirp sub-bottom data of USGS field activity K0211PS collected in Puget Sound, Washington in April of 2011

High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey in April 2011 south of Bainbridge Island and west of Seattle in Puget Sound, Washington. Data were collected aboard the R/V Karluk during field activity K0211PS using an Edgetech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.

Info
Chirp seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013

Chirp data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA, using an EdgeTech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.

Info
Multichannel minisparker and boomer seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013

Multichannel minisparker and boomer seismic-reflection data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA, using a 500-Joule SIG 2-mille minisparker or an Applied Acoustics triple plated S-Boomer sound source and a 24-channel Goemetrics hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location.

Info
Chirp sub-bottom data collected in 2019 in Whiskeytown Lake, California during USGS field activity 2018-686-FA

These metadata describe high-resolution chirp sub-bottom data collected in May 2019 in Whiskeytown Lake, California. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2018-686-FA. The chirp sub-bottom data are provided in SEG-Y format.

Info
Multichannel boomer data of USGS field activity 2017-612-FA collected in Lake Washington, Washington in February of 2017

High-resolution multichannel boomer seismic-reflection data were collected by the U.S. Geological Survey and the University of Washington in February of 2017 east of Seattle in Lake Washington, Washington. Data were collected aboard University of Washington’s R/V Clifford A. Barnes during USGS field activity 2017-612-FA using an Applied Acoustics triple plate S-Boom sound source and recorded on a 24 channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds of ...

Info
Chirp sub-bottom data of USGS field activity 2017-612-FA collected in Puget Sound and Lake Washington, Washington in February of 2017

High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey and the University of Washington in February of 2017 west of Seattle in Puget Sound and in Lake Washington, Washington. Data were collected aboard the University of Washington’s R/V Clifford A. Barnes during USGS field activity 2017-612-FA using an Edgetech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.

Info
Multichannel minisparker data of USGS field activity 2017-612-FA collected in Puget Sound, Washington in February of 2017

High-resolution multichannel minisparker seismic-reflection data were collected by the U.S. Geological Survey and the University of Washington in February of 2017 west of Seattle in Puget Sound and in Lake Washington, Washington. Data were collected aboard University of Washington’s R/V Clifford A. Barnes during USGS field activity 2017-612-FA using a 500 Joule SIG 2-mille minisparker sound source and recorded on a 48 channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans ...

Info
High-resolution acoustic backscatter data collected southwest of Chenega Island, Alaska during field activity 2014-622-FA

High-resolution acoustic backscatter data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder.

Info
High-resolution multibeam bathymetry data collected southwest of Chenega Island, Alaska during field activity 2014-622-FA

High-resolution multibeam data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder.

Info
High-resolution acoustic backscatter data collected southwest of Montague Island, Alaska during field activity 2014-622-FA

High-resolution acoustic backscatter data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder.

Info
High-resolution multibeam bathymetry data collected southwest of Montague Island, Alaska during field activity 2014-622-FA

High-resolution multibeam data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder.

Info
Minisparker seismic-reflection data collected southwest of Montague Island and southwest of Chenega, Alaska during field activity 2014-622-FA

High-resolution single channel minisparker seismic-reflection data were collected by the U.S. Geological Survey and the Alaska Department of Fish and Game in May 2014 in southern Prince William Sound southwest of Chenega and from southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during field activity 2014-622-FA, using a 500 Joule SIG 2-mille minisparker sound source and a single channel streamer and recorded with a Triton SB-Logger ...

Info
Multichannel minisparker seismic-reflection data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016

High-resolution multichannel minkisparker seismic-reflection (MCS) profiles were collected by the U.S. Geological Survey in September and October of 2016 from the northern portion of the Santa Barbara Basin offshore southern California. Data were collected aboard the USGS R/V Parke Snavely and NOAA R/V Shearwater during field activity 2016-666-FA using a SIG 2-mille minisparker and recorded using 48- or 24-channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ...

Info
Benthic habitats of the coral reef ecosystem on the south shore of Moloka'i

A benthic habitat polygon coverage has been created of the coral reef ecosystem on the south shore of Moloka'i. Polygons were hand-digitized from visual interpretation of aerial photography and SHOALS bathymetry data. We also utilized in situ knowledge from towed instruments, underwater photography and videography, and diver and snorkeler observations. The polygons have attributes for Main Structure/Substrate, Dominant Structure/Substrate, Major Biological Cover, Percent of Major Biological Cover, Reef Zone ...

Info
Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kaanapali priority study area and the State of Hawaii Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawaii

A benthic habitat polygon coverage has been created of the coral reef ecosystem within the U.S. Coral Reef Task Force Watershed Partnership Initiative Kaanapali priority study area and the State of Hawaii Kahekili Herbivore Fisheries Management Area, West-Central Maui, Hawaii. Polygons were hand-digitized from visual interpretation of QuickBird-2 satellite imagery (2005), and SHOALS bathymetry data. We also utilized in situ knowledge from underwater photography and videography (2002-2011), side-scan sonar ...

Info
Benthic habitats of the coral reef ecosystem off the coast of Pu'ukohola Heiau (PUHE) National Historic Site

A benthic habitat polygon coverage has been created of the coral reef ecosystem off the coast of Pu'ukohola Heiau (PUHE) National Historic Site on the Kona Coast of Hawai'i. Polygons were hand-digitized from visual interpretation of aerial photography and SHOALS bathymetry data. We also utilized in situ knowledge from towed instruments, underwater photography and videography, and diver and snorkeler observations. The polygons have attributes for Main Structure/Substrate, Dominant Structure/Substrate, Major ...

Info
Benthic habitats of the coral reef ecosystem off the coast of Kaloko-Honokohau (KAHO) National Historical Park

A benthic habitat polygon coverage has been created of the coral reef ecosystem within and adjacent to Kaloko-Honokohau (KAHO) National Historical Park on the Kona Coast of Hawai'i. Polygons were hand-digitized from visual interpretation of aerial photography and SHOALS bathymetry data. We also utilized in situ knowledge from towed instruments, underwater photography and videography, and diver and snorkeler observations. The polygons have attributes for Main Structure/Substrate, Dominant Structure/Substrate ...

Info
Benthic habitats of the coral reef ecosystem off the coast of Pu'uhonua O Honaunau (PUHO) National Historical Park

A benthic habitat polygon coverage has been created of the coral reef ecosystem off the coast of Pu'uhonua O Honaunau (PUHO) National Historical Park on the Kona Coast of Hawai'i. Polygons were hand-digitized from visual interpretation of aerial photography and SHOALS bathymetry data. We also utilized in situ knowledge from towed instruments, underwater photography and videography, and diver and snorkeler observations. The polygons have attributes for Main Structure/Substrate, Dominant Structure/Substrate, ...

Info
1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1869. In 2002, NOAA published digitized shorelines for T-sheet (T-1097), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1922. In 2002, NOAA published digitized shorelines for T-sheet (T-3920), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1950. In 2002, NOAA published digitized shorelines for T-sheet (T-9393), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1983 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National High Altitude Photography (NHAP) program. The NHAP was coordinated by the U.S. Geological Survey as an interagency project to acquire cloud-free aerial photographs at a specific altitude above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. Black-and-white aerial photographs were obtained on 9-inch film from an ...

Info
1998 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center's Digital Orthophoto Quarter Quads (DOQQ) images collected on January 24, 1998. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2001 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements collected by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA) on September 07-09, 2001. Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft ...

Info
2004 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quarter Quads (DOQQ) images collected on January 20, 2004. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2005 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quadrangle (DOQ) images collected on November 17, 2005. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2007 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on October 11, 2007. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2008 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center high-resolution orthorectified images collected on October 01, 2008. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2010 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on May 10, 2010. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2012 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey Earth Resources Observations and Science Center (EROS) high-resolution orthorectified image that was collected on October 20, 2012 over Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2013 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana and published in USGS Data Series 838. Photo Science, Inc., was contracted by the USGS to collect and process these data. Lidar data were acquired around portions of both the Alabama and Louisiana barrier islands; however, this dataset only contains shorelines created from data acquired from ...

Info
2014 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on January 16-18, 2014 over Breton Island, Louisiana and released under USGS field activity number 14LGC01. Quantum Spatial was contracted by the USGS to collect and process these data. This dataset contains vectorized shorelines created from data acquired from Breton Island, Louisiana. Shorelines were vectorized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (dates_meta.txt)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 268 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Individual Dates) is a dataset consisting of 223 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 254 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 271 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ...

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 280 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from ...

Info
Topographic survey transect data along the Carmel River, central California, 2013 to 2021 (ver. 2.0, March 2022)

Topographic surveys were completed during eight summer surveys (in 2013, 2014, 2015, 2016, 2017, 2019, 2020 and 2021) at 10 sites along the Carmel River, CA: Berwick (BW), Control Reach (CR), Crossroads (CRO), DeDampierre Lower (DDL), DeDampierre Upper (DDU), Dam Reach (DM), Reservoir Reach (RS), San Carlos (SC), Sleepy Hollow (SH), and Schulte Road (SR)). Topographic measurements were made at multiple locations along four to six cross-section transects per site using a total station (at sites CR, RS, DM ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 25, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 25, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 31, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 2, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 2, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 1, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
High resolution structure from motion digital surface models representing three sites on North Core Banks, NC in October 2022

These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ...

Info
Ground Penetrating Radar and Global Positioning System Data Collected from Fire Island, New York, March-April 2021

Fire Island, New York (NY) is a 50-kilometer (km) long barrier island system fronting the southern coast of Long Island, NY with relatively complex geology. In 2016, the U.S. Geological Survey (USGS) conducted ground penetrating radar (GPR) surveys and sediment sampling at Fire Island to characterize and quantify spatial variability in the subaerial geology (Forde and others, 2018; Buster and others, 2018). These surveys, in combination with historical data, allowed for a preliminary reconstruction of the ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2022

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in August 2022 (USGS Field Activity Number 2022-638-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) and a kayak equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (February 4, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (March 7, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 8, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 23, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 15, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 5, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 14, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 21, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2018

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in July 2018 (USGS Field Activity Number 2018-648-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) and a kayak equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on backpacks. ...

Info
Digital Elevation Model of Oxbow Reservoir, Placer County, California, October 2022

This portion of the data release presents a digital elevation model (DEM) of portions of Oxbow Reservoir in Placer County, California. The DEM was created using topographic survey data collected on 26 October 2022, when the reservoir was partially de-watered to allow repairs to the dam infrastructure following the Mosquito Fire. Although the gates of the dam were open during this time, significant portions of the reservoir site remained inaccessible to surveyors due to the continued flow of the Middle Fork ...

Info
Topographic survey data of Oxbow Reservoir, Placer County, California, October 2022

This portion of the data release presents topographic survey data of portions of Oxbow Reservoir in Placer County, California. These data were collected on 26 October 2022, when the reservoir was partially de-watered to allow repairs to the dam infrastructure following the Mosquito Fire. Although the gates of the dam were open during this time, significant portions of the reservoir site remained inaccessible to surveyors due to the continued flow of the Middle Fork American River. Consequently, these data ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 17, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 19, 2019)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (August 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (December 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 3, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (April 1, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (May 19, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 28, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 9, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 8, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 22, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (June 7, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (January 27, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 8, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 11, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
USGS CoastCam at Isla Verde, Puerto Rico: 2018-2019 GNSS Topography Survey Data

This data release presents the post-processed Global Navigation Satellite System (GNSS) ground-survey data acquired during the installation of the Argus camera at Isla Verde, Puerto Rico. The data contains topographic survey data collected during the installation of the camera. Data were collected on foot by a person equipped with a GNSS antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ). The GNSS measurements were made using Post-Processed Kinematic (PPK) corrections ...

Info
GNSS Topography Survey Data Collected from Tres Palmas, Rincón, Puerto Rico

This data release presents the post-processed Global Navigation Satellite System (GNSS) ground-survey data acquired during the installation of a camera system at Tres Palmas, Rincón, Puerto Rico (PR). The data contains topographic survey data collected during the installation of the camera. Data were collected on foot, by a person equipped with a GNSS antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ). The GNSS measurements were made using Post-Processed Kinematic (PPK) ...

Info
Ground Penetrating Radar and Global Positioning System Data Collected from Central Florida Gulf Coast Barrier Islands, Florida, February-March 2021

A morphologically diverse and dynamic group of barrier islands along the Central Florida (FL) Gulf Coast (CFGC) form a 75-kilometer-long chain stretching from Anclote Key in the north to Egmont Key in the south. In 2021, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted ground penetrating radar (GPR) surveys on barrier islands located along the CFGC, in Pinellas County, FL. This study investigated the past evolution of the CFGC from field ...

Info
USGS CoastCam at Waiakāne, Moloka'i, Hawai'i: 2018 GNSS Topography Survey Data

This data release presents the post-processed global navigation satellite system (GNSS) ground-survey data acquired during the installation of the Argus camera at Waiakāne, Moloka'i, Hawai'i. The data contains topographic survey data collected during the installation of the camera. Data were collected on foot by a person equipped with a GNSS antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ). The GNSS measurements were made using Post-Processed Kinematic (PPK) ...

Info
Bathymetric change of Central San Francisco Bay, California: 1971 to 2020

This 25-m-resolution surface presents bathymetric change of Central San Francisco Bay, California (hereafter referred to as Central Bay). This surface compares a 1-m-resolution digital elevation model (DEM) of the central portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the Central Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution DEM of Central Bay comprised of historic surveys from ...

Info
Bathymetric change of San Pablo Bay, California: 1983 to 2015

This 25-m-resolution surface presents bathymetric change of San Pablo Bay, California, from 1983 to 2015. This surface compares a 1-m-resolution digital elevation model (DEM) of the northern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the San Pablo Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution bathymetric DEM of San Pablo Bay comprised of historic surveys from 1983 to 1986 ...

Info
Bathymetric change of South San Francisco Bay, California: 1979 to 2020

This 50-m-resolution surface presents bathymetric change of South San Francisco Bay, California (hereafter referred to as South Bay). This surface compares a 1-m-resolution digital elevation model (DEM) of the southern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the South Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 50-m-resolution DEM of South Bay comprised of historic surveys from 1979 to ...

Info
Bathymetric change of Suisun Bay, California: 1988 to 2016

This 25-m-resolution surface presents bathymetric change of Suisun Bay, California, from 1988 to 2016. This surface compares a 1-m-resolution digital elevation model (DEM) of the northern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the Suisun region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution bathymetric DEM of Suisun Bay comprised of historic surveys from 1988 to 1990 (referred to as ...

Info
1998 Fall Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Fall Gulf Coast ...

Info
08ACH03_first_return_metadata: EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
08ACH03_last_return_metadata: EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015 - DEM data

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm ...

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015 - XYZ Data

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm ...

Info
ANGD2014_BE_z20_n88g12A_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A digital elevation model (DEM) mosaic was produced for Anegada, British Virgin Islands, from remotely sensed, geographically referenced elevation measurements collected by Watershed Sciences, Inc. (WSI)/Quantum Spatial using an Optech Orion M300 (1064-nm wavelength) lidar sensor on January 21, 2014.

Info
ANGD2014_EAARLB_z20_v09g12A_metadata: Lidar-Derived Seamless (Bare Earth and Submerged) Point Cloud for Coastal Topography—Anegada, British Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
ANGD2014_EAARLB_z20_v09g12A_mosaic_metadata: Lidar-Derived Seamless (Bare Earth and Submerged) Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
ASIS2015_HRJQ_BE_z18_n88g12B_classified_metadata: Lidar-Derived Classified Bare-Earth Point-Cloud for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015

Binary point-cloud data were produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor.

Info
ASIS2015_HRJQ_BE_z18_n88g12B_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015

A digital elevation model (DEM) mosaic was produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor.

Info
BITH2014_BeaumontLNRUnits_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
BITH2014_BeaumontLNRUnits_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental ...

Info
BITH2014_BigSandyCreekCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
BITH2014_BigSandyCreekCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B) ...

Info
BITH2014_BigSandyCreekUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging ...

Info
BITH2014_BigSandyCreekUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ...

Info
BITH2014_CanyonlandsUNRCorridorUnits_EAARLB_BE_z15_n88g12A_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Canyonlands and Upper Neches River Corridor Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Canyonlands and Upper Neches River Corridor Units of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
BITH2014_CanyonlandsUNRCorridorUnits_EAARLB_FS_z15_n88g12A_mosaic_metadata: Lidar-derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Canyonlands and Upper Neches River Corridor Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Canyonlands and Upper Neches River Corridor Units of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
BITH2014_LanceRosierUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed ...

Info
BITH2014_LanceRosierUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
BITH2014_LittlePineIslandBayouCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
BITH2014_LittlePineIslandBayouCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: Lidar-Derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
BITH2014_LowerNechesRiverCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
BITH2014_LowerNechesRiverCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
BITH2014_MenardCreekCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging ...

Info
BITH2014_MenardCreekCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging ...

Info
BITH2014_NBJGBUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
BITH2014_NBJGBUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
BITH2014_TurkeyCreekUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed ...

Info
BITH2014_TurkeyCreekUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
BITH2014_VillageCreekCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL ...

Info
BITH2014_VillageCreekCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography—Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
Topobathymetric Lidar Survey of Breton and Gosier Islands, Louisiana, January 16 and 18, 2014 - Point-cloud Data

This dataset contains binary point-cloud data, produced from remotely sensed, geographically referenced topobathymetric measurements collected by Photo Science, Inc., encompassing the Breton and Gosier Island, LA study areas. The original area of interest was buffered by 100 meters to ensure complete coverage, resulting in approximately 75 square miles of lidar data. The Breton Island Lidar project called for the planning, acquisition, processing, and derivative products of topobathymetric lidar data, ...

Info
CRKR2014_EAARLB_z17_n88g12A_metadata: EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Crocker Reef, Florida, were produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
CRKR2014_EAARLB_z17_n88g12A_mosaic_metadata: EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Crocker Reef, Florida, was produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ...

Info
ds765_General_metadata: Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Derived products of a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors. Post ...

Info
ds765_metadata: Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Dune features (dune crest and toe elevations) and mean-high-water shoreline data for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science and Woolpert using using airborne lidar sensors. Binary point-cloud ...

Info
DS888-metadata: EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a seamless (bare-earth and submerged) digital elevation model for part of Fire Island, New York, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system ...

Info
DS888_PRSF_tile_extents: EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

This shapefile was produced from 53 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface ...

Info
FIIS2002_EAARLA_BE_z18_n88g99_metadata: Lidar-Derived Bare-Earth XYZ for EAARL Coastal Topography—Fire Island, New York, 2002

ASCII XYZ data for Fire Island, New York, was produced from remotely sensed, geographically referenced elevation measurements collected October 25 and November 8, 2002 by the U.S. Geological Survey, in cooperation with the National Park Service (NPS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
FIIS2002_EAARLA_BE_z18_n88g99_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL Coastal Topography—Fire Island, New York, 2002

A digital elevation model (DEM) mosaic for Fire Island, New York, was produced from remotely sensed, geographically referenced elevation measurements collected October 25 and November 8, 2002 by the U.S. Geological Survey, in cooperation with the National Park Service (NPS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted ...

Info
LINY2011_HRIR_BE_z18_n88g09_classified_metadata: Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

Binary point-cloud data were produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
LINY2011_HRIR_BE_z18_n88g09_mosaic_metadata: Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

A digital elevation model (DEM) mosaic was produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
STCR2014_EAARLB_v09g12B_metadata: EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
STCR2014_EAARLB_v09g12B_mosaic_metadata: EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
Bathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington

This data release contains bathymetry and topography data from surveys performed on the Elwha River delta between 2010 and 2017. Sediment grain-size data are available for selected surveys performed after May 2012. This data release will be updated as additional bathymetry, topography, and surface-sediment grain-size data from future surveys become available.

Info
Central San Francisco Bay bathymetric change: 1855 to 1979

This data release provides a series of four bathymetric change grids generated from historical bathymetric surveys collected in central San Francisco Bay, CA from the 1855 to 1979. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1855, 1895, 1920, 1947, and 1979. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were then adjusted to account for gridding ...

Info
Central San Francisco Bay bathymetry: 1855 to 1979

This data release provides a series of five bathymetric digital elevation models (DEMs) of central San Francisco Bay, CA generated from single-beam hydrographic surveys collected from 1855 to 1979. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1855, 1895, 1920, 1947, and 1979. Depth soundings from the pre-1930s surveys were manually digitized and georeferenced while the later surveys were obtained in digital ...

Info
San Pablo Bay bathymetric change: 1856 to 1983

This data release provides a series of five bathymetric change grids generated from historical bathymetric surveys collected in San Pablo Bay, CA from the 1856 to 1983. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1856, 1887, 1898, 1922, 1951, and 1983. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were then adjusted to account for gridding interpolation ...

Info
San Pablo Bay bathymetry: 1856 to 1983

This data release provides a series of six bathymetric digital elevation models (DEMs) of San Pablo Bay, CA generated from single-beam hydrographic surveys collected from 1856 to 1983. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1856, 1887, 1898, 1922, 1951, and 1983. Depth soundings from the pre-1930s surveys were manually digitized and georeferenced while the later surveys were obtained in digital format, and ...

Info
South San Francisco Bay bathymetric change: 1858 to 2005

This data release provides a series of five bathymetric change grids generated from historical bathymetric surveys collected in south San Francisco Bay, CA from the 1858 to 2005. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1858, 1898, 1931, 1956, and 1983 plus Sea Surveyor, Inc. collected a survey in 2005. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were ...

Info
South San Francisco Bay bathymetry: 1858 to 2005

This data release provides a series of six bathymetric digital elevation models (DEMs) of south San Francisco Bay, CA generated from single-beam hydrographic surveys collected from 1858 to 2005. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1858, 1898, 1931, 1956, and 1983 as well as a survey collected by Sea Surveyor, Inc. in 2005. Depth soundings from the pre-1930s surveys were manually digitized and ...

Info
Suisun Bay bathymetric change: 1866 to 1990

This data release provides a series of four bathymetric change grids generated from historical bathymetric surveys collected in Suisun Bay, CA from the 1866 to 1990. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1866, 1886, 1923, 1941, and 1990. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were then adjusted to account for gridding interpolation bias and ...

Info
Suisun Bay bathymetry: 1866 to 1990

This data release provides a series of five bathymetric digital elevation models (DEMs) of Suisun Bay, CA generated from single-beam hydrographic surveys collected from 1866 to 1990. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1866, 1886, 1923, 1941, and 1990. Depth soundings from the pre-1930s surveys were manually digitized and georeferenced while the later surveys were obtained in digital format, and all ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2019

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in August 2019 (USGS Field Activity Number 2019-633-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on backpacks. Positions ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2011

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2011. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2011

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2011. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
River-channel topography on the Elwha River, Washington, 2006 to 2017

This portion of the data release presents topographic data collected at 5 study sites along Elwha River, Washington between 2006 and 2017. Elevations along channel-perpendicular transects were surveyed using a total station and prism rod. Initial geodetic control was established using static global positioning system (GPS) occupations. A total station was subsequently used to expand and maintain the survey control network at each site. All survey data were referenced to the NAD83 datum, using the UTM, zone ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, October 2014

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in October 2014. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2015

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2015. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September and October 2015

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September and October 2015. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2016

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2016. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September and October 2016

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September and October 2016. Bathymetry data were collected using a personal watercraft (PWC) and small boat, each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2017

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2017. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September 2017

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September 2017. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, April 2014

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in April 2014. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2012

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2012. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2010

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September 2010. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
San Francisco Bay-Delta bathymetric/topographic digital elevation model(DEM)

A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute(ESRI), ArcGIS Topo to Raster module to interpolate ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2016

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2016. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2014

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September 2014. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2012

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2012. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, March 2013

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in March 2013. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2015

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2015. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2013

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September 2013. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, January 2015

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in January 2015. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, February 2016

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in February 2016. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2017

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in July 2017 (USGS Field Activity Number 2017-638-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) and a kayak equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on backpacks. ...

Info
Digital elevation model (DEM) of the Cache Slough Complex, Sacramento-San Joaquin Delta, California

This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2004 and 2019 in the Cache Slough Complex (CSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR), 2017 USGS Sacramento Delta Lidar, and 2004 bathymetry data from the Army Corp of Engineers. Small gaps ...

Info
Digital elevation model (DEM) of the Sacramento River Deep Water Ship Channel (DWSC), Sacramento-San Joaquin Delta, California

This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2017 and 2019 in the Sacramento River Deep Water Ship Channel (DWSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR) and 2017 USGS Sacramento Delta Lidar, to produce a seamless digital elevation ...

Info
Topographic survey transect endpoint coordinates along the Carmel River, central California, 2013 to 2021 (ver. 2.0, March 2022)

This dataset contains the easting, northing, and elevation values of the river-right and river-left transect endpoint reference benchmarks (RBM and LBM) from survey transects at 10 survey reaches along the Carmel River, central California. Topographic surveys were completed on these transects during eight summer surveys (in 2013, 2014, 2015, 2016, 2017, 2019, 2020 and 2021). See accompanying file within this data release for elevation measurements. All data were collected in NAD83 UTM10N horizontal ...

Info
High resolution topography for two pools on the Carmel River, central California, 2014 to 2019

High-resolution topographic surveys were conducted at two pools on the Carmel River between 2014 and 2019 using a survey-grade total station. The Dam Reach pool (DMPOOL) is located within the Dam Reach, approximately 450 meters downstream of the former site of the San Clemente Dam. The Sleepy Hollow pool (SHPOOL) is located within the Sleepy Hollow reach, approximately 2.25 kilometers downstream of the former site of the San Clemente Dam. Both pools were surveyed in 2014, 2015, 2016, 2017, and 2019 using a ...

Info
Digital elevation model (DEM) of central San Francisco Bay, California, created using bathymetry data collected between 2009 and 2020 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the central portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital elevation model (DEM) of central San Francisco Bay, California, created using bathymetry data collected between 2009 and 2020 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the central portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ...

Info
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ...

Info
Digital elevation model (DEM) of south San Francisco Bay, California, created using bathymetry data collected between 2005 and 2020 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the southern portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital elevation model (DEM) of south San Francisco Bay, California, created using bathymetry data collected between 2005 and 2020 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the southern portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2014: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, NC collaborated to gather alongshore ground-based lidar beach topography at Fire Island, NY. This high-resolution elevation dataset was collected on April 1, 2014, and is part of the USGS's ongoing beach monitoring effort under Hurricane Sandy Supplemental Project GS2-2B. This USGS Data Release includes the resulting processed elevation ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2014: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, NC collaborated to gather alongshore ground-based lidar beach topography at Fire Island, NY. This high-resolution elevation dataset was collected on April 1, 2014, and is part of the USGS's ongoing beach monitoring effort under Hurricane Sandy Supplemental Project GS2-2B. This USGS Data Release includes the resulting processed elevation ...

Info
Lidar Bathymetry Data of Cape Canaveral, Florida, (2014) in XYZ ASCII text file format

The Cape Canaveral Coastal System (CCCS) is a prominent feature along the Southeast U.S. coastline and is the only large cape south of Cape Fear, North Carolina. Most of the CCCS lies within the Merritt Island National Wildlife Refuge and included in its boundaries are the Cape Canaveral Air Force Station (CCAFS), NASA’s Kennedy Space Center (KSC), and a large portion of Canaveral National Seashore. The actual promontory of the modern cape falls within the jurisdictional boundaries of the CCAFS. These ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 9, 2016)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 30, 2016)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Archive of Ground Penetrating Radar and Differential Global Positioning System Data Collected in April 2016 from Fire Island, New York

Researchers from the U.S. Geological Survey (USGS) conducted a long-term, coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project (https://coastal.er.usgs.gov/fire-island/) objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April ...

Info
Beach Profile Data Collected From Madeira Beach, Florida (February 17, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 9, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 14, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November, 9 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 24, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 15, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 18, 2019)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Ground Control Point Locations and Photographs From North Topsail Beach and Camp Lejeune, North Carolina, June 2019

Scientist from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected xyz locations for 53 Ground Control Points (GCP) in North Topsail Beach and within the Camp Lejeune Marine Corps Base, North Carolina, June 12-14, 2019. During this study, Global Positing System (GPS) data were collected using a single Spectra SP80 Global Navigation Satellite System (GNSS) receiver affixed to a 2-meter (m) survey pole. Additional attributes pertaining to each survey point ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (June 10, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 10, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 8, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 21, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 6, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 16, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 18, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 15, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (March 3, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (June 16, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 9, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 26, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 24, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 10, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 8, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Subtropical Storm Alberto Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0800 AM EDT SUN MAY 27 2018

This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Subtropical Storm Alberto in May 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
Tropical Storm Bill Assessment of Potential Coastal-Change Impacts: NHC Advisory 2, 0900 AM UTC MON JUN 16 2015

This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Bill in June 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 4-5 September 2010: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on September 4 and 5, 2010 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 12-13 February 2011: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on February 12 and 13, 2011 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ...

Info
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ...

Info
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) ...

Info
Tropical Storm Colin Assessment of Potential Coastal Change Impacts: NHC Advisory 4, 0500 AM EDT MON JUN 06 2016

This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Colin in June 2016. Storm-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision ...

Info
EAARL Coastal Topography-Northern Gulf of Mexico

ASCII xyz point cloud data were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS) and National Air and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ...

Info
EAARL Topography-Vicksburg National Millitary Park 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system ...

Info
EAARL Topography-Jean Lafitte National Historical Park and Preserve 2006

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Jean Lafitte National Historical Park and Preserve in Louisiana was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL ...

Info
EAARL Topography-Vicksburg National Millitary Park 2008: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system ...

Info
EAARL Coastal Topography-Fire Island National Seashore 2007

A bare earth/first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ...

Info
EAARL Topography-Natchez Trace Parkway 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DSM) of a portion of the Natchez Trace Parkway in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system ...

Info
EAARL Coastal Topography-Sandy Hook 2007

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Gateway National Recreation Area's Sandy Hook Unit in New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar ...

Info
EAARL Submerged Topography-U.S. Virgin Islands 2003

A submerged topography elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted ...

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard ...

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an ...

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ...

Info
EAARL Topography--George Washington Birthplace National Monument 2008

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the George Washington Birthplace National Monument in Virginia was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
EAARL Coastal Topography-St. John, U.S. Virgin Islands 2003: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of St. John, U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted ...

Info
EAARL Coastal Topography--Pearl River Delta 2008: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the University of New Orleans (UNO), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ...

Info
ATM Coastal Topography--Alabama 2001

A first surface elevation map was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a twin-otter or P3 aircraft and incorporates a green-wavelength laser ...

Info
ATM Coastal Topography--Florida 2001: Western Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Florida 2001: Eastern Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: Bare Earth

A bare-earth elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ...

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 14

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 15

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Mississippi, 2001

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Coastal Topography and Imagery--Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

A digital elevation map (also known as a Digital Elevation Model, or DEM) of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: Seamless (Bare Earth and Submerged)

A seamless (bare-earth and submerged) elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, 2010: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Chandeleur Islands, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Coastal Topography--Gateway National Recreation Area, New Jersey and New York, 2009

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Gateway National Recreation Area in New Jersey and New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: First Surface

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

A digital elevation model (DEM) of a portion of the Mississippi and Alabama barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ...

Info
EAARL Coastal Topography--Sandy Hook Unit, Gateway National Recreation Area, New Jersey, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Sandy Hook Unit of the Gateway National Recreation Area in New Jersey, post-Nor'Ida (November 2009 nor'easter) was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Fire Island National Seashore, New York, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography and Imagery--Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

A digital elevation model (DEM) of a portion of the eastern Louisiana barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Maryland and Delaware, post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the eastern Maryland and Delaware coastline, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: First Surface

A digital elevation model (DEM) of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Coastal Topography and Imagery--Fire Island National Seashore, New York, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: Bare Earth

A digital elevation model (DEM) of a portion of the Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground ...

Info
EAARL Coastal Topography-Cape Canaveral, Florida, 2009: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Northern Outer Banks, North Carolina, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the northern North Carolina coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Topography--Potato Creek Watershed, Georgia, 2010

A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 27, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
EAARL Topography--Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

A digital elevation model (DEM) of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area (bathymetry was irresolvable) using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: Bare Earth

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2010

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia was produced from remotely sensed, geographically referenced elevation measurements collected cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area on March 19 and 24, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Virginia coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The EAARL sensor ...

Info
EAARL Coastal Topography--Alligator Point, Louisiana, 2010

A digital elevation model (DEM) of a portion of Alligator Point, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's ...

Info
EAARL Coastal Topography--Central Wetlands, Louisiana, 2010

A digital elevation model (DEM) of a portion of the Central Wetlands, Louisiana was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on March 4 and 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser ...

Info
EAARL Coastal Topography--North Shore, Lake Pontchartrain, Louisiana, 2010

A digital elevation model (DEM) of a portion of the north shore of Lake Pontchartrain, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 28, March 1, and March 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography and Imagery--Western Louisiana, Post-Hurricane Rita, 2005: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the Louisiana coastline, post-Hurricane Rita (September 2005 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar-extracted dune features

Dune crest and toe positions along a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York)using using airborne ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar point-cloud data (LAS)

Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar and digital elevation model (DEM) tile index

This data represents the tile index for lidar data collected for the U.S. Geological Survey in November 2012 following Hurricane Sandy, which made landfall in the eastern United States on October 29th, 2012. The lidar LAS and derived-digital elevation model (DEM) data are divided into these tiles and filenames match the tile number. The index shows the extent of data collection (portions of the coastline of New York, Delaware, Maryland, Virginia, and North Carolina) and provides tile names to aid in ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Mean-high-water shoreline

Mean-high-water (MHW) shoreline for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines were derived from lidar data collected following Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th). Data were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically-referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, ...

Info
EAARL-B Coastal Topography--Eastern New Jersey, Hurricane Sandy, 2012: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, pre-Hurricane Sandy, 2012

American Standard Code for Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012–2013

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL-B Coastal Topography--Chandeleur Islands, Louisiana, 2012: Seamless (Bare Earth and Submerged) (.shp file)

This shapefile was produced from 52 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
Beach Topography— Terrestrial-Based Lidar Beach Topography of Fire Island, New York, June 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the ...

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, June 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2013: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2013: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, ...

Info
Lidar-Derived Classified Bare-Earth Point-Cloud for Coastal Topography—Fire Island, New York, 07 May 2012

Binary point-cloud data were produced for Fire Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. using an Optech Gemini lidar sensor flown on a Cessna 206 aircraft.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Fire Island, New York, 07 May 2012

A digital elevation model (DEM) mosaic was produced for Fire Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. using an Optech Gemini lidar sensor flown on a Cessna 206 aircraft

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Hurricane Florence Assessment of Potential Coastal Change Impacts: NHC Advisory 57, 1100 AM EDT THU SEP 13 2018

This dataset defines storm-induced coastal erosion hazards for the Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Florence in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune ...

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
Tropical Storm Gordon Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0700 AM CDT TUE SEP 04 2018

This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Gordon in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ...

Info
Hurricane Harvey Assessment of Potential Coastal Change Impacts: NHC Advisory 020, 700 AM CDT FRI AUG 25 2017

This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Harvey in August 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ...

Info
Tropical Storm Hermine Assessment of Potential Coastal Change Impacts: NHC Advisory 20, 0500 AM EDT FRI SEP 02 2016

This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Hermine in September 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ...

Info
Hurricane Irma Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 800 AM EDT SAT SEPT 9 2017

This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia and South Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Irma in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of ...

Info
Extratropical Storm Jan2016 Assessment of Potential Coastal Change Impacts: 1200 PM EST FRI JAN 22 2016

This dataset defines storm-induced coastal erosion hazards for the Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct impact of the Extratropical Storm in January 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities ...

Info
Hurricane Joaquin Assessment of Potential Coastal Change Impacts: NHC Advisory 27, 0800 AM EDT SUN OCT 04 2015

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island and Massachusetts coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Joaquin in October 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
Massachusetts Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for Massachusetts for data collected at various times between 2000 and 2013.

Info
Massachusetts raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for Massachusetts for data collected at various times between 2000 and 2013

Info
Extratropical Storm March 2018 Assessment of Potential Coastal Change Impacts: 0800 AM EST FRI MAR 02 2018

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island, Massachusetts, New Hampshire and Maine coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of an Extratropical Storm in March 2018. Storm-induced water levels, due to both surge and waves, were ...

Info
Hurricane Maria Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 0800 AM EDT TUE SEPT 26 2017

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland and Delaware coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Maria in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ...

Info
Hurricane Matthew Assessment of Potential Coastal Change Impacts: NHC Advisory 037, 800 AM EDT FRI OCT 07 2016

This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia, South Carolina and North Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Matthew in October 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of ...

Info
Topographic Lidar Survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013 -- Bare Earth Digital Elevation Models (DEMs)

A topographic lidar survey was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. The data were collected at a nominal pulse space of 1 meter (m) and processed to identify bare earth elevations. Bare earth Digital Elevation Models (DEMs) were generated based on these data. Photo Science, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS ...

Info
Topographic Lidar Survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013 -- Classified Point Data

A topographic lidar survey was conducted July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. Lidar data exchange format (LAS) 1.2 formatted classified point data files were generated based on these data. Photo Science, Inc. was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The lidar data were collected at a nominal pulse spacing (NPS) of 1.0 meter (m). The horizontal projection and datum of the data are ...

Info
Topographic Lidar Survey of the Alabama, Mississippi, and Southeast Louisiana Barrier Islands, from September 5 to October 11, 2012 -- Bare Earth Digital Elevation Models

A topographic lidar survey was conducted from September 5 to October 11, 2012, for the barrier islands of Alabama, Mississippi and southeast Louisiana, including the coast near Port Fourchon. Most of the data were collected September 5-10, 2012, with a reflight conducted on October 11, 2012, to increase point density in some areas. The data were collected at a nominal pulse space of 1-meter (m) and processed to identify bare earth elevations. Bare earth Digital Elevation Models(DEMs) were generated based ...

Info
Topographic Lidar Survey of the Alabama, Mississippi, and Southeast Louisiana Barrier Islands, from September 5 to October 11, 2012 -- Classified Point Data

This Data Series Report contains lidar elevation data collected September 5 to October 11, 2012, for the barrier islands of Alabama, Mississippi and southeast Louisiana, including the coast near Port Fourchon. Most of the data were collected September 5-10, 2012, with a reflight conducted on October 11, 2012, to increase point density in some areas. Lidar data exchange format (LAS) 1.2 formatted point data files were generated based on these data. The point cloud data were processed to extract bare earth ...

Info
Topographic Lidar Survey of the Chandeleur Islands, Louisiana, February 6, 2012 -- Bare Earth DEMs

A topographic Lidar survey was conducted on February 6, 2012, over the Chandeleur Islands, Louisiana. The data were collected at a nominal pulse space of 0.5-meter (m) and processed to identify bare earth elevations. Bare earth digital elevation models (DEMs) were generated based on these data. Digital Aerial Solutions, LLC, was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS Imagine (IMG) files with a horizontal ...

Info
Topographic Lidar Survey of the Chandeleur Islands, Louisiana, February 6, 2012 -- Classified Point Data

This Data Series Report contains lidar elevation data collected February 6, 2012, over the Chandeleur Islands, Louisiana. LAS 1.2 formatted point data files were generated based on these data. The point cloud data were processed to extract bare earth data; therefore, the point cloud data are classified into only these classes: 1 and 17-unclassified, 2-ground, 9-water, and 10-breakline proximity. Digital Aerial Solutions, LLC, was contracted by the USGS to collect and process these data. The lidar data were ...

Info
Hurricane Michael Assessment of Potential Coastal Change Impacts: NHC Advisory 15, 0400 AM CDT WED OCT 10 2018

This dataset defines storm-induced coastal erosion hazards for the Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Michael in October 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ...

Info
Hurricane Nate Assessment of Potential Coastal Change Impacts: NHC Advisory 12, 0800 AM EDT SAT OCT 07 2017

This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Nate in October 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three ...

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
New Jersey Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for New Jersey for data collected at various times between 2007 and 2014.

Info
New Jersey raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for New Jersey for data collected at various times between 2007 and 2014

Info
Biscayne National Park LIDAR GeoTIFF

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the north Florida reef tract; secondarily, the data will be assessed ...

Info
EAARL Topography-Dry Tortugas National Park

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the Dry Tortugas reef tract and Subaerail topography of land features ...

Info
EAARL Bare Earth Topography-Fire Island National Seashore

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Topography-Fire Island National Seaashore

A first return elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Topography-Assateague Island National Seashore-Lidar GeoTIFF

LiDAR is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging LiDAR is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne LiDAR to measure the topography of Assateague Island National Seashore land features. Elevation measurements were ...

Info
EAARL Topography-Thomas Stone National Historic Site

A first surface elevation map (also known as a Digital Elevation Model or DEM) of Thomas Stone National Historic Site was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Topography - Gateway National Recreation Area

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Gateway National Recreation Area was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Topography George Washington Birthplace National Monument

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of George Washington Birthplace National Monument was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), the National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted ...

Info
EAARL Topography-Cape Cod National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Cape Cod National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Massachusetts, over Cape Cod National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed ...

Info
EAARL Topography-Gulf Islands National Seashore-Mississippi

Abstract: Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced ...

Info
EAARL Topography-Sagamore Hill National Historic Site

Elevation maps (also known as Digital Elevation Models or DEMs) of the Sagamore Hill National Historic Site were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in New York, over the Sagamore Hill National Historic Site using the NASA Experimental Advanced Airborne Research ...

Info
EAARL Submarine Topography-Florida Keys National Marine Sanctuary

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging Lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS in cooperation with NASA, NOAA, and NPS is using airborne Lidar to measure the submerged topography of the northern Florida reef tract; secondarily, the data will ...

Info
EAARL Topography-Gulf Islands National Seashore-Florida

Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced Airborne Research ...

Info
EAARL Topography-Padre Island National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Submarine Topography-Northern Florida Keys Reef Tract

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS, in cooperation with NASA and NPS, is using airborne lidar to measure the submerged topography of the Northern Florida Keys Reef Tract (NFKRT); secondarily, the ...

Info
EAARL Bare Earth Topography-Colonial National Historical Park

Elevation maps (also known as Digital Elevation Models or DEMs) of Colonial National Historical Park were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ASCII text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each surface. Elevation measurements were collected in Virginia, over Colonial National Historical Park, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
Hurricane Sandy Assessment of Potential Coastal Change Impacts: NHC Advisory 29, 1100 AM EDT MON OCT 29 2012

This dataset defines hurricane-induced coastal erosion hazards for the Delaware, Maryland, New Jersey, New York, and Virginia coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Sandy in October 2012. Hurricane-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the ...

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
EAARL-B Topography—Suncook River, New Hampshire, 5-6 November 2013: Seamless (Bare Earth and Submerged)

Binary point-cloud data for part of the Suncook River in New Hampshire were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey. Elevation measurements were collected over the area on November 5 and 6, 2013 using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and ...

Info
Lidar-Derived Point Cloud for EAARL-B Submerged Topography–—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
Lidar-Derived Digital Elevation Model (DEM) Mosaic for EAARL-B Submerged Topography-Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation ...

Info
Geology and geomorphology--Offshore of Bodega Head Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Geology_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E. ...

Info
Geology and geomorphology--Offshore of Bolinas Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Geology_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ...

Info
Geology and geomorphology--Offshore of Half Moon Bay map area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Geology_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ...

Info
Geology and geomorphology--Offshore of San Francisco Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The polygon shapefile is included in "Geology_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., ...

Info
Geology and geomorphology--Offshore of San Gregorio Map Area, California

This part of SIM 3306 presents data for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Geology_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey ...

Info
Geology and geomorphology--Offshore of Fort Ross Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Geology_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ...

Info
Geology and geomorphology--Offshore of Point Reyes Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Geology_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ...

Info
Geology and geomorphology--Offshore of Tomales Point Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Geology_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., Endris ...

Info
Geology and geomorphology--Offshore of Carpinteria, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Carpinteria map area, California. The vector data file is included in "Geology_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, ...

Info
Geology--Offshore of Coal Oil Point, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Geology_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., ...

Info
Geology and geomorphology--Offshore of Pacifica map area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Geology_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross ...

Info
Geology and geomorphology--Offshore Refugio Beach, California

This part of DS 781 presents the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Geology_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., Seitz, G ...

Info
Geology and geomorphology--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Geology_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Geology and geomorphology--Offshore of Santa Barbara, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Santa Barbara map area, California. The vector data file is included in "Geology_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., ...

Info
Geology and geomorphology--Offshore of Ventura, California

This part of DS 781 presents geologic data of the Offshore of Ventura map area, California. The vector data file is included in "Geology_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., ...

Info
Landslide debris aprons offshore of southern California, 2023

Landslide debris aprons have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES), single-beam echosounder data, and seismic reflection data.

Info
Landslide evacuation zones offshore of Southern California, 2023

Landslide evacuation zones, which represent the areas from which material is removed by landslide processes, have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES) and single-beam echosounder data.

Info
Landslides offshore of southern California, 2023

Landslides have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES), single-beam echosounder data, and seismic reflection data.

Info
Landslide mass-wasting zones offshore of Southern California, 2023

Landslide mass-wasting zones have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES) and single-beam echosounder data.

Info
Landslide scarps offshore of Southern California, 2023

Landslide scarp features have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES) and single-beam echosounder data.

Info
Quaternary faults offshore of California

A comprehensive map of Quaternary faults has been generated for offshore of California. The Quaternary fault map includes mapped geometries and attribute information for offshore fault systems located in California State and Federal waters. The polyline shapefile has been compiled from previously published mapping where relatively dense, high-resolution marine geophysical data exist. The data are also available in kml format and are accompanied by a pdf containing citations for the compiled source data. In ...

Info
Geology and geomorphology--Drakes Bay and Vicinity Bay, California

This part of DS 781 presents data for the geologic and geomorphic map of the Drakes Bay and Vicinity, California. The polygon shapefile is included in "Geology_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ...

Info
Geology and geomorphology--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Geology_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ...

Info
Submarine-landslide scarps--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the submarine-landslide scarps for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "SubmarineLandslideScarps_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G. ...

Info
Geology and geomorphology--Offshore of Monterey, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Geology_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds. ...

Info
Geology and geomorphology--Offshore Pigeon Point, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Geology_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. Marine geology and geomorphology were mapped in the Offshore Pigeon Point map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California'€™s State Waters. Offshore geologic units were delineated on the basis of ...

Info
Geology and geomorphology--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Geology_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ...

Info
Geology and geomorphology--Offshore of Aptos Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Geology_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ...

Info
Geology and geomorphology--Offshore Santa Cruz, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Santa Cruz map area, California. The vector data file is included in "Geology_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K ...

Info