Environment

Environmental resources, protection and conservation, for example environmental pollution, waste storage and treatment, environmental impact assessment, monitoring environmental risk, nature reserves, landscape, water quality, air quality, environmental modeling
Subtopics:
(none)

1917 results listed alphabetically [list by similarity]
02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Sound Velocity Profiles (SVP)

Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ...

Info
1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1869. In 2002, NOAA published digitized shorelines for T-sheet (T-1097), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1922. In 2002, NOAA published digitized shorelines for T-sheet (T-3920), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1950. In 2002, NOAA published digitized shorelines for T-sheet (T-9393), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1970s Shorelines for the Main Island of Puerto Rico

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
1970s Shorelines for Vieques and Culebra, Puerto Rico

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
1983 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National High Altitude Photography (NHAP) program. The NHAP was coordinated by the U.S. Geological Survey as an interagency project to acquire cloud-free aerial photographs at a specific altitude above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. Black-and-white aerial photographs were obtained on 9-inch film from an ...

Info
1998 Atlantic coast NASA/NOAA/USGS Spring ATM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Atlantic Coast ...

Info
1998 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center's Digital Orthophoto Quarter Quads (DOQQ) images collected on January 24, 1998. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
1998 East Coast NASA/NOAA/USGS Winter ATM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Atlantic Coast ...

Info
1998 Fall Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Fall Gulf Coast ...

Info
1998 MA, NY, MD, and VA USGS/NASA ATM2 Lidar-derived dune crest, toe and shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
1998 Southeast ATM Lidar-derived dune crest, toe and shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Southeast USGS/NASA ...

Info
1999 Atlantic Coast NASA/NOAA/USGS ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Floyd

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Atlantic Coast ...

Info
1999 Fall Texas USGS/NASA/NOAA ATM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Fall Gulf Coast ...

Info
2000 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2000 U.S. Army Corps of ...

Info
2001 Gulf Coast USGS/NASA ATM Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2001 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 U.S. Army Corps of ...

Info
2001 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements collected by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA) on September 07-09, 2001. Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft ...

Info
2002 NOAA/NASA/USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 Post-Hurricane Lili ...

Info
2002 Post-Tropical Storm Fay University of Texas Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 University of Texas ...

Info
2002 USGS Virgina and Maryland Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ...

Info
2003 NOAA Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2003 NOAA Oahu lidar ...

Info
2003 Pre- and Post-Hurricane Isabel USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2003 Pre- and Post ...

Info
2004 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quarter Quads (DOQQ) images collected on January 20, 2004. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2004 Maine NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 NOAA Maine lidar ...

Info
2004 Post-Hurricane Charley West Florida EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ...

Info
2004 Post-Hurricane Frances USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ...

Info
2004 Post-Hurricane Ivan Northern Gulf of Mexico EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 USGS Post-Ivan ...

Info
2004 Post-Hurricane Jeanne USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ...

Info
2004 Pre-Hurricane Ivan Eastern Gulf Coast United States Army Corps of Engineers (USACE) Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Pre-Ivan Eastern ...

Info
2004 USACE Post-Ivan Florida Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 U.S. Army Corps of ...

Info
2005-2006 Atlantic Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005-2006 Atlantic Coast ...

Info
2005 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quadrangle (DOQ) images collected on November 17, 2005. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2005 EAARL Fire Island Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Fire Island USGS ...

Info
2005 East Coast (DE, MD, NJ, NY, NC, and VA) USACE NCMP Topobathy Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2005 Padre Island USGS EAARL Lidar-derived dune crest, toe and shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Experimental ...

Info
2005 Post-Hurricane Dennis Florida U.S. Army Corps of Engineers Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USACE Post-Dennis ...

Info
2005 Post-Hurricane Katrina EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Post-Hurricane ...

Info
2005 USGS Post-Hurricane Rita Texas and Louisiana Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USGS Post-Hurricane ...

Info
2006 FEMA Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2006 Federal Emergency ...

Info
2007 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on October 11, 2007. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2007 Northeast Barrier Islands USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Northeast Barrier ...

Info
2007 South Florida FDEM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Florida Division of ...

Info
2007 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 U.S. Army Corps of ...

Info
2008-2017 Globigerinoides ruber Sediment Trap Data Collected from the Gulf of Mexico

This data release includes results of a high-resolution (1–2 weeks) and long-term sediment trap time series collected from the northern Gulf of Mexico. This dataset allows for a detailed assessment of the seasonal distribution, size, morphological variability and geochemistry of co-occurring pink and white chromotypes of the shallow-water foraminifera, Globigerinoides ruber. The flux of both chromotypes is highly correlated, and both represent mean annual conditions in the marine surface mixed layer. ...

Info
2008 Assateague Island USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Assateague Island ...

Info
2008 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center high-resolution orthorectified images collected on October 01, 2008. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2008 North Carolina and Virginia NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Atlantic Coast ...

Info
2008 Post-Hurricane Gustav Northern Gulf of Mexico USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Post-Hurricane ...

Info
2008 South Louisiana USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 South Louisiana ...

Info
2008 USGS Post-Hurricane Ike Texas Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 USGS Post-Hurricane ...

Info
2009 Cape Canaveral USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Cape Canaveral ...

Info
2009 Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Florida U.S. Army ...

Info
2009 North Carolina USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 U.S. Army Corps of ...

Info
2009 Post-Nor’Ida USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Post-Nor’Ida USGS ...

Info
2009 Western Gulf of Mexico USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Western Gulf of ...

Info
2010-2022 New Jersey and New York Beach Shoreline Change

This dataset defines shoreline change rates for each 10-meter (m)-wide profile calculated via endpoint rate and linear regression from Himmelstoss and others (2018). Shoreline change rates were calculated for two time periods: pre-Sandy (2010-2012) and post-Sandy (2012-2022). The profiles were derived from light detection and ranging (lidar) digital elevation models (DEMs). Refer to Doran and others (2017) for more information about the source lidar data. These data support the National Fish and Wildlife ...

Info
2010-2022 New Jersey and New York Beach Volumes

This dataset defines the volume of sand along a 10-meter (m) wide profile between the seaward-most dune toe and the mean high water shoreline derived from light detection and ranging (lidar) digital elevation models (DEMs). Refer to Doran and others (2017) for more information about the source lidar data. These data support the National Fish and Wildlife Foundation (NFWF)-funded project entitled “Monitoring Hurricane Sandy Beach and Marsh Resilience in New York and New Jersey” (NFWF project ID 2300.16 ...

Info
2010 Alabama and Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Alabama and Florida ...

Info
2010 Assateague Island National Seashore USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Assateague Island ...

Info
2010 Delaware USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Delaware U.S. Army ...

Info
2010 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on May 10, 2010. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2010 Florida West Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Florida West Coast ...

Info
2010 lidar-derived mean high water shoreline for the coast of South Carolina

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
2010 Louisiana and Mississippi USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Louisiana and ...

Info
2010 Maryland USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Maryland U.S. Army ...

Info
2010 New Jersey USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New Jersey U.S. ...

Info
2010 New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New York U.S. Army ...

Info
2010 Northeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Northeast Atlantic ...

Info
2010 profile-derived mean high water shorelines of the North Shore of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2010 profile-derived mean high water shorelines of the South Coast of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2010 Shorelines for Vieques, Culebra, and the Main Island of Puerto Rico

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
2010 Southeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Southeast Atlantic ...

Info
2010 Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Virginia U.S. Army ...

Info
2011 East Coast New York/New Jersey NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 East Coast New York ...

Info
2011 Northern Gulf Coast USACE Lidar-derived dune crest, toe and shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Northern Gulf Coast ...

Info
2011 profile-derived mean high water shorelines of the Outer Cape of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2011 profile-derived mean high water shorelines of the South Shore of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2011 USGS New York Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Atlantic Coast ...

Info
2012-2014 contour-derived mean high water shorelines of the Massachusetts coast used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2012 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey Earth Resources Observations and Science Center (EROS) high-resolution orthorectified image that was collected on October 20, 2012 over Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2012 Post-Hurricane Isaac USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Fire Island, New York Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Long Island, New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2012 Post-Hurricane Sandy New Jersey USGS EAARL-B Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Northeast Atlantic Coast USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post ...

Info
2012 Post-Sandy New York and New Jersey USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Sandy New York ...

Info
2012 Pre-Hurricane Sandy Fire Island National Seashore, USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Pre-Sandy New York and New Jersey USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Pre Hurricane Sandy ...

Info
2012 profile-derived mean high water shorelines of Martha's Vineyard, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2012 profile-derived mean high water shorelines of Nantucket, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013-14 Massachusetts Lidar-Derived Dune Crest Point Data

This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline ...

Info
2013-14 Massachusetts Lidar-Derived Dune Toe Point Data

This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline ...

Info
2013-2014 Northeast USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013-2014 Post� ...

Info
2013-2014 profile-derived mean high water shorelines of the South Shore of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013 Dauphin Island USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Dauphin Island ...

Info
2013 Maine USACE/NAE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Maine United States ...

Info
2013 NOAA Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 National Oceanic ...

Info
2013 profile-derived mean high water shorelines of Martha's Vineyard, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013 profile-derived mean high water shorelines of Nantucket, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013 profile-derived mean high water shorelines of the north shore of Martha's Vineyard, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013 profile-derived mean high water shorelines of the north shore of Nantucket, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013 profile-derived mean high water shorelines of the South Coast of MA used in shoreline change analysis.

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2013 USACE NAE Topobathy Lidar: Maine Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ...

Info
2013 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 U.S. Army Corps of ...

Info
2013 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana and published in USGS Data Series 838. Photo Science, Inc., was contracted by the USGS to collect and process these data. Lidar data were acquired around portions of both the Alabama and Louisiana barrier islands; however, this dataset only contains shorelines created from data acquired from ...

Info
2014 East Coast Maine USACE/NAE ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast Maine ...

Info
2014 East Coast New Hampshire USACE/NAE ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast New ...

Info
2014 East Coast Rhode Island NOAA/NGS ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast Rhode ...

Info
2014 Mobile County, Alabama Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 Mobile County, ...

Info
2014 Post-Hurricane Sandy SC to NY NOAA NGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2014 profile-derived mean high water shorelines of Cape Cod Bay, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2014 profile-derived mean high water shorelines of the North Shore of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2014 profile-derived mean high water shorelines of the Outer Cape of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2014 profile-derived mean high water shorelines of the south shore of Cape Cod, MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using ...

Info
2014 USGS CMGP Post-Sandy Long Island Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 USGS CMGP Post ...

Info
2014 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on January 16-18, 2014 over Breton Island, Louisiana and released under USGS field activity number 14LGC01. Quantum Spatial was contracted by the USGS to collect and process these data. This dataset contains vectorized shorelines created from data acquired from Breton Island, Louisiana. Shorelines were vectorized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital ...

Info
2015 Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
2015 Mississippi and Alabama USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 Mississippi and ...

Info
2015 USACE Florida Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 U.S. Army Corps of ...

Info
2016 Florida East Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ...

Info
2016 Massachusetts NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2016 NOAA Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
2016 USACE Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ...

Info
2016 USACE Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
2016 USACE Post-Hurricane Matthew Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2017-2018 lidar-derived mean high water shoreline for the coast of South Carolina

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
2017 East Coast USACE/FEMA ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Irma

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2017 Atlantic Coast ...

Info
2017 Florida West Coast NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches.Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2017 Georgia through New York USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Fear to the South Carolina border (NCwest)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
2017 lidar-derived mean high water shoreline for the coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
2017 USGS Lidar: Chenier Plain, LA Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ...

Info
2018 Alabama and Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 East Coast (NC) USACE NCMP Topobathy Lidar Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 East Coast (VA, NC, SC) USACE NCMP Post-Florence Topobathy Lidar-Derived Dune Crest, Toe, and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 mean high water shoreline of the coast of MA used in shoreline change analysis

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
2018 Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas ...

Info
2018 Mississippi and Alabama USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Puerto Rico USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 South Texas USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline derived from the 2018 United States ...

Info
2018 USGS Florida Panhandle Post-Michael Lidar-derived Dune Crest, Toe, and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2018 United States Army ...

Info
2019 North Carolina and Virginia Post-Dorian USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2019 North Carolina and Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (L=lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2020 New Jersey and New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2020 New Jersey USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2021 Experimental Discrete Field and Laboratory CO2 System Measurements from the Hillsborough River, Florida

This dataset contains carbon dioxide (CO2) system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) to investigate the effects of Mercuric chloride (HgCl2) on low salinity, organic-rich estuarine water samples acquired from the Tampa Bay estuary located in west central Florida. Discrete water samples were collected using two, 30-liter (30L) Niskin bottles to capture surficial waters from the lower Hillsborough River. Filtered water ...

Info
2021 New York State Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
2022 New Jersey and New York USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
210Pb and 137Cs measurements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay

This data release provides 210Pb and 137Cs measurements in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay.

Info
30 meter Esri binary grids of coastal response type probabilities with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land ...

Info
30 meter Esri binary grids of predicted elevation with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land ...

Info
30 meter Esri binary grids of probability of predicted elevation with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land ...

Info
Accelerator Mass Spectrometry (AMS) 14C radiocarbon analysis of authigenic carbonates collected offshore the U.S. Mid- and South Atlantic

Results are presented from Accelerator Mass Spectrometry (AMS) carbon-14 radiocarbon dating of carbonate rock samples collected from seep fields offshore the U.S. Mid- and South Atlantic in 2018 and 2019. Samples were collected as a fingerprint to past hydrocarbon seep activity, fluid source, and depositional environment.

Info
Acidification and Increasing CO2 Flux Associated with Five, Springs Coast, Florida Springs (1991-2014)

Scientists from the South West Florida Management District (SWFWMD) acquired and analyzed over 20 years of seasonally-sampled hydrochemical data from five first-order-magnitude (springs that discharge 2.83 m3 s-1 or more) coastal springs located in west-central Florida. These data were subsequently obtained by the U.S. Geological Survey (USGS) for further analyses and interpretation. The spring study sites (Chassahowitzka, Homosassa, Kings Bay, Rainbow, and Weeki Wachee), which are fed by the Floridan ...

Info
Aerial_Shorelines_1940_2015.shp - Dauphin Island, Alabama Shoreline Data Derived from Aerial Imagery from 1940 to 2015

Aerial_WDL_Shorelines.zip features digitized historic shorelines for the Dauphin Island coastline from October 1940 to November 2015. This dataset contains 10 Wet Dry Line (WDL) shorelines separated into 58 shoreline segments alongshore Dauphin Island, AL. The individual sections are divided according to location along the island and shoreline type: open-ocean, back-barrier, marsh shoreline. Imagery of Dauphin Island, Alabama was acquired from several sources including the United States Geological Survey ...

Info
A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
ALASKA1964_INUNDATION - Alaska 1964 Estimated Tsunami Inundation Line at Seaside, Oregon

This data set is a polyline shapefile representing the tsunami inundation line for the Alaska 1964 event based on observations and associated information obtained by Tom Horning (1997). The polyline was digitized from a line drawn by Tom Horning on an orthophoto taken in 1997.

Info
ALASKA1964_OBS - Alaska 1964 Tsunami Observations at Seaside, Oregon

This data set is a point shapefile representing observations of inundation and water levels from the Alaska 1964 event obtained by Tom Horning (1997). The geospatial dataset were derived from a spreadsheet provided by Bruce Jaffe.

Info
ALASKA1964_RUNUP - Alaska 1964 Tsunami Runup Heights at Seaside, Oregon (alaska1964_runup.shp)

This data set is a point shapefile representing tsunami inundation runup heights for the Alaska 1964 event based on observations and associated information obtained by Tom Horning (1997). The geospatial data was digitized from a points drawn by Tom Horning on an orthophoto taken in 1997.

Info
AllCases_Final_Bed_Elevations: Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output

The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island evolution, and sediment fluxes. Delft3D model output of suspended and bedload sediment fluxes, and final bed levels data are ...

Info
AllCases_Sediment_Fluxes: Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output

The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, Alabama were modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island evolution, and sediment fluxes. Delft3D model output of suspended and bedload sediment fluxes, and final bed levels data are ...

Info
AllScenarios_Bin1thru18_SSC: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Initial_and_Final_Bed_Elevations: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Sediment_Fluxes: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Spatial_Flow: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Spatial_Waves: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
Anthropogenic metals and other elements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay

This data release provides the measurement of anthropogenic metals and other elements in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay.

Info
Approximate Bounds of the Zooxanthellate Coral-Rich Area Associated with Pulley Ridge

Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, ...

Info
Archive of Post-Hurricane Charley Coastal Oblique Aerial Photographs Collected during USGS Field Activity 04CCH01 from Marco Island to Fort DeSoto, Florida, August 15, 2004

On August 15, 2004, the U.S. Geological Survey (USGS) conducted an aerial survey off the southwest coast of Florida, starting in the south at Marco Island to Fort DeSoto in the north. These data along with Experimental Advanced Airborne Research Lidar (EAARL) coastal topographic and bathymetric data collected on August 16, 2004 (Bonisteel and others, 2009), will be used to detect coastal changes such as beach erosion and overwash caused by Hurricane Charley. These data will also be used to track future ...

Info
Archive of Post-Hurricane Isabel Coastal Oblique Aerial Photographs Collected during USGS Field Activity 03CCH01 from Ocean City, Maryland, to Fort Caswell, North Carolina, and Inland from Waynesboro to Redwood, Virginia, September 21 - 23, 2003

On September 21 - 23, 2003, the U.S. Geological Survey (USGS) conducted an aerial survey along the Atlantic coast, from Ocean City, Maryland, to Fort Caswell, North Carolina, and inland from Waynesboro to Redwood, Virgina. These photos were used to document coastal changes such as beach erosion and overwash caused by Hurricane Isabel and to identify potential landslide areas inland. They may also be used as baseline data for future surveys. The USGS and the National Aeronautics and Space Administration ...

Info
Assateague Island Seabeach Amaranth Survey Data — 2001 to 2018

Seabeach amaranth (Amaranthus pumilus) is a federally threatened plant species that was once prevalent on beaches of the U.S. mid-Atlantic coast. For much of the 20th century, seabeach amaranth was absent and thought to be extinct along this coast presumably due to development and recreational pressure. Few plants were observed over much of the 20th century and the species was federally listed as endangered in 1993. To re-establish a population, the Natural Resources staff at Assateague Island National ...

Info
ATLANTIC - Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the U.S. Atlantic Coast

The goal of this project is to provide a preliminary overview, at a National scale, the relative susceptibility of the Nation's coast to sea-level rise through the use of a coastal vulnerability index (CVI). This initial classification is based upon the variables geomorphology, regional coastal slope, tide range, wave height, relative sea-level rise and shoreline erosion and accretion rates. The combination of these variables and the association of these variables to each other furnish a broad overview of ...

Info
Attenuation Factor model results for Upper Floridan aquifer vulnerability to Bromacil and Ethylene Dibromide

This dataset includes Attenuation Factor (AF; Rao and others, 1985) model results for Upper Floridan aquifer vulnerability to Bromacil and 1,2-Dibromoethane or Ethylene Dibromide (EDB). The AF value serves as an index for assessing the transport of pesticide mass from the vadose zone. The AF model setup requires the input of raster soil bulk density, soil organic carbon content, soil field capacity, soil air filled porosity, recharge to the aquifer, depth to groundwater, the pesticide sorption coefficient, ...

Info
Backscatter [5m]--Offshore Monterey, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ...

Info
Backscatter [7125]-- Offshore of Monterey, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_7125_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ...

Info
Backscatter [8101]--Offshore of Monterey, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_8101_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ...

Info
Backscatter A [8101]--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Drakes Bay and Vicinity, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, ...

Info
Backscatter A [8101]--Offshore Bolinas, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_2004_OffshoreBolinas.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ...

Info
Backscatter A [8101]--Offshore of Bodega Head, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell ...

Info
Backscatter A [8101]--Offshore of Fort Ross, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ...

Info
BackscatterA [8101]--Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterA_8101_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ...

Info
BackscatterA [8101]--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterA_8101_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ...

Info
Backscatter A [8101]--Offshore of Tomales Point, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_ OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ...

Info
BackscatterA [8101]--Offshore Pigeon Point, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterA_8101_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, ...

Info
BackscatterA [8210]--Offshore of Salt Point map area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "Backscatter8101_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ...

Info
Backscatter A [CSUMB]--Offshore Coal Oil Point, California

This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ...

Info
Backscatter A [CSUMB]--Offshore of Carpinteria, California

This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Carpinteria map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz ...

Info
Backscatter A [CSUMB]--Offshore of Santa Barbara, California

This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Santa Barbara map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G. ...

Info
Backscatter A [CSUMB]--Offshore of Ventura, California

This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, ...

Info
BackscatterA [SWATH]--Offshore Aptos, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterA_SWATH_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ...

Info
BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterA_USGS_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map ...

Info
Backscatter B [7125]--Offshore of Bodega Head, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell ...

Info
Backscatter B [7125]--Offshore of Fort Ross, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ...

Info
BackscatterB [7125]--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterB_7125_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ...

Info
Backscatter B [7125]--Offshore of Tomales Point, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ...

Info
BackscatterB [7125]--Offshore Pigeon Point, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterB_7125_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, ...

Info
Backscatter B [8101]--Offshore Bolinas, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_8101_2007_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ...

Info
BackscatterB [EM300]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by Monterey Bay Aquarium Research Institute (MBARI) and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterB_EM300_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. ...

Info
BackscatterB [EM300]--Offshore Aptos, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterB_EM300_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ...

Info
Backscatter B [Swath]--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Drakes Bay and Vicinity, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_Swath_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson ...

Info
BackscatterB [Swath]--Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterB_Swath_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ...

Info
BackscatterB [Swath]--Offshore of Salt Point map area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterSwath_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ...

Info
Backscatter B [USGS]--Offshore of Carpinteria, California

This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Carpinteria map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, ...

Info
Backscatter B [USGS]--Offshore of Coal Oil Point, California

This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ...

Info
Backscatter B [USGS]--Offshore of Santa Barbara, California

This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Santa Barbara map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., ...

Info
Backscatter B [USGS]--Offshore of Ventura, California

This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C ...

Info
Backscatter C [7125]--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_7125_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. The acoustic-backscatter map of Drakes Bay and Vicinity map area, California, was generated from backscatter collected by California ...

Info
BackscatterC [7125]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterC_7125_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These ...

Info
Backscatter C [7125]--Offshore Bolinas, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterC_7125_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ...

Info
BackscatterC [7125]--Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterB_Swath_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ...

Info
BackscatterC [7125]--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "Backscatter7125_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ...

Info
Backscatter C [Fugro]--Offshore of Coal Oil Point, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterC_Fugro_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ...

Info
Backscatter C [Swath]--Offshore of Bodega Head, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ...

Info
Backscatter C [Swath]--Offshore of Fort Ross, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ...

Info
BackscatterC [SWATH]--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterC_SWATH_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ...

Info
Backscatter C [Swath]--Offshore of Tomales Point, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ...

Info
BackscatterC [SWATH]--Offshore Pigeon Point, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterC_SWATH_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson ...

Info
BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterD_CSUMB_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4 ...

Info
Backscatter D [Snippets]--Offshore Bolinas, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterD_Snippets_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ...

Info
Backscatter D [USGS]--Offshore of Tomales Point, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterD_USGS_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ...

Info
Backscatter E [Swath]--Offshore Bolinas, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterE_Swath_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ...

Info
Backscatter [Fugro]--Offshore of Gaviota Map Area, California

This part of DS 781 presents 2-m-resolution data collected by Fugro Pelagos for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[Fugro]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State ...

Info
Backscatter--Offshore of Point Conception Map Area, California

This part of DS 781 presents 2-m-resolution data for the acoustic-backscatter map of the Offshore of Point Conception Map Area, California. The GeoTiff is included in "Backscatter_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ...

Info
Backscatter--Offshore of Refugio Beach Area, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Refugio Beach map area, California. The raster data file is included in "Backscatter_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., ...

Info
Backscatter [Swath]-- Offshore of Monterey, California

This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_Swath_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ...

Info
Backscatter [SWATH]--Offshore Santa Cruz, California

This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Santa Cruz map area, California. Backscatter data are provided as a raster file included in "Backscatter_Swath_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, ...

Info
Backscatter [USGS07]--Offshore of Gaviota Map Area, California

This part of DS 781 presents 2-m-resolution data collected by the U.S. Geological Survey in 2007 for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[USGS07]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), ...

Info
Backscatter [USGS08]--Offshore of Gaviota Map Area, California

This part of DS 781 presents 2-m-resolution data collected by the U.S. Geological Survey in 2008 for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[USGS08]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), ...

Info
Barrier island geomorphology and seabeach amaranth metrics at 50-m alongshore transects, and 5-m cross-shore points for 2008 — Assateague Island, MD and VA.

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as piping plover ...

Info
Baseline_BackBarrier.shp - Baseline Along the Back-Barrier (North-Facing) Coast of Dauphin Island, Alabama, Generated to Calculate Shoreline Change Rates.

Analysis of shoreline change for Dauphin Island, Alabama was conducted using the U.S. Geological Survey (USGS) Digital Shoreline Analysis System (DSAS) v.4.3 for ArcMap (Thieler and others, 2009) and vector shorelines derived from air photos and lidar elevation surveys. DSAS-generated transects were cast at 100-meter intervals along a user defined shore-parallel baseline. The intersections of transects with the mean high water (MHW) shoreline positions are identified by intercept points. The rate of ...

Info
Baseline coastal oblique aerial photographs collected at Breton Island and the Chandeleur Islands, Louisiana, January 22, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On January 22, 2011, the USGS conducted an oblique aerial photographic survey at Breton Island and the Chandeleur Islands, LA, aboard a Cessna 210 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the beach and ...

Info
Baseline coastal oblique aerial photographs collected at the Chandeleur Islands, Louisiana, and Dauphin Island, Alabama, July 24, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On July 24, 2010, the USGS conducted an oblique aerial photographic survey at the Chandeleur Islands, Louisiana, and Dauphin Island, Alabama, aboard a Beechcraft BE90 King Air aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline Coastal Oblique Aerial Photographs Collected from Breton Island, Louisiana, to the Alabama-Florida Border, July 13, 2013.

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On July 13, 2013, the USGS conducted an oblique aerial photographic survey from Breton Island, Louisiana, to the Alabama-Florida border, aboard a Cessna 172 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect data for assessing incremental changes ...

Info
Baseline coastal oblique aerial photographs collected from Breton Island to the Chandeleur Islands, Louisiana, September 3, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 3, 2010, the USGS conducted an oblique aerial photographic survey from Breton Island to the Chandeleur Islands, Louisiana, aboard a Cessna 210 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the ...

Info
Baseline coastal oblique aerial photographs collected from Calcasieu Lake, Louisiana, to Brownsville, Texas, September 9-10, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 9-10, 2008, the USGS conducted an oblique aerial photographic survey (during Field Activity Number [FAN] 08ACH05) from Calcasieu Lake, Louisiana, to Brownsville, Texas, aboard a Cessna C-210 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0991 ...

Info
Baseline Coastal Oblique Aerial Photographs Collected from Dauphin Island, Alabama, to Breton Island, Louisiana, August 8, 2012

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On August 8, 2012, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a Cessna 172 aircraft at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect data for assessing incremental changes since ...

Info
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, July 26–27, 2007

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On July 26-27, 2007, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, June 9, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On June 9, 2011, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a Beechcraft BE90 King Air aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (fig. 2, http://pubs.usgs.gov/ds/1044/html/ds1044_fig2.html). This mission was ...

Info
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, September 26–27, 2006

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 26-27, 2006, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected from Dog Island, Florida, to Breton Island, Louisiana, June 24–25, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 24–25, 2008, the USGS conducted an oblique aerial photographic survey from Dog Island, Florida, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental ...

Info
Baseline coastal oblique aerial photographs collected from False Cape State Park, Virginia, to Myrtle Beach, South Carolina, May 6, 2008

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On May 6, 2008, the USGS conducted an oblique aerial photographic survey from False Cape State Park, Virginia, to Myrtle Beach, South Carolina, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission (08CH01) was conducted to collect data ...

Info
Baseline coastal oblique aerial photographs collected from Fenwick Island State Park, Delaware, to Corolla, North Carolina, March 27, 1998

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On March 27, 1998, the USGS conducted an oblique aerial photographic survey from Fenwick Island State Park, Delaware, to Corolla, North Carolina, aboard a U.S. Coast Guard HH60 Helicopter at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline Coastal oblique aerial photographs collected from Horseshoe Beach, Florida, to East Cape, Florida, May 19-20, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On May 19-20, 2010, the USGS conducted an oblique aerial photographic survey from Horseshoe Beach, Florida, to East Cape, Florida, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes ...

Info
Baseline coastal oblique aerial photographs collected from Key Largo, Florida, to the Florida/Georgia border, September 5-6, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 5-6, 2014, the USGS conducted an oblique aerial photographic survey from Key Largo, Florida, to the Florida/Georgia border aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0953/html/ds953_fig2.html). This mission was flown to ...

Info
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 1, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 1, 2014, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana, aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0952/html/ds952_fig2.html). This survey was flown to ...

Info
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 18–19, 2015

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 18–19, 2015, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana (fig. 1, http://pubs.usgs.gov/ds/1008/downloads/maps/index.jpg), aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (fig. 2, http:/ ...

Info
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 7, 2016

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 7, 2016, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana, aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the ...

Info
Baseline coastal oblique aerial photographs collected from Navarre, Florida, to the Chandeleur Islands, Louisiana, and from Grand Point, Alabama, to St. Joseph Point, Mississippi, June 6, 2006

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 6, 2006, the USGS conducted an oblique aerial photographic survey from Navarre, Florida, to the Chandeleur Islands, Louisiana, and from Grand Point, Alabama, to St. Joseph Point, Mississippi, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore ...

Info
Baseline coastal oblique aerial photographs collected from Owls Head, Maine, to the Virginia/North Carolina border, May 19-22, 2009

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On May 19-22, 2009, the USGS conducted an oblique aerial photographic survey from Owls Head, Maine, to the Virginia/North Carolina border, aboard a Cessna 207A aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0946/html/ds946_fig2.html). This mission was flown ...

Info
Baseline coastal oblique aerial photographs collected from Ponte Vedra, Florida, to the South Carolina/North Carolina border, August 24, 2011

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On August 24, 2011, the USGS conducted an oblique aerial photographic survey from Ponte Vedra, Florida, to the South Carolina/North Carolina border, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ...

Info
Baseline coastal oblique aerial photographs collected from Tampa Bay to the Marquesas Keys, Florida, June 22–23, 2010

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 22–23, 2010, the USGS conducted an oblique aerial photographic survey from Tampa Bay to the Marquesas Keys, Florida, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in ...

Info
Baseline coastal oblique aerial photographs collected from the Harney River, Everglades National Park, Florida to Anclote Key, Florida, November 14, 2006

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On November 14, 2006, the USGS conducted an oblique aerial photographic survey from the Harney River, Everglades National Park, Florida to Anclote Key, Florida, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect ...

Info
Baseline coastal oblique aerial photographs collected from the Virginia/North Carolina border to Montauk Point, New York, October 5-6, 2014

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On October 5-6, 2014, the USGS conducted an oblique aerial photographic survey from the Virginia/North Carolina border to Montauk Point, New York, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2, http://pubs.usgs.gov/ds/0958/html/ds958_fig2.html). This survey was ...

Info
Baseline coastal oblique aerial photographs collected U.S. Army Corps of Engineers Field Research Facility, Duck, North Carolina, June 9, 2017

The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 09, 2017, the USGS conducted an oblique aerial photographic survey of the U.S. Army Corps of Engineers Field Research Facility (USACE FRF), located in Duck, North Carolina, aboard a Cessna 182 aircraft at an altitude of approximately 1000 feet (ft). This mission was conducted to collect data for USACE FRF ...

Info
Baseline for the backshore of Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the Cape Cod Bay coastal region in Massachusetts, generated to calculate shoreline change rates (without the proxy-datum bias) using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the Cape Cod Bay coastal region in Massachusetts, generated to calculate shoreline change rates (with the proxy-datum bias) using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Baseline for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the coastal region north of Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the coastal region north of Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the coastal region south of Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the coast of Puerto Rico's main island generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023)

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States' coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling ...

Info
Baseline for the coast south of Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the east facing coast of Cape Cod, Massachusetts, from Monomoy to Provincetown, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the Elizabeth Islands, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the Florida east coast (FLec) coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Baseline for the Florida panhandle (FLph) coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Baseline for the Florida west coast (FLwc) coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Baseline for the Georgia coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Baseline for the islands of Vieques and Culebra, Puerto Rico, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling ...

Info
Baseline for the North Carolina coastal region from Cape Fear to the South Carolina border (NCwest)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Baseline for the North Carolina coastal region from Cape Lookout to Cape Fear (NCsouth)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Baseline for the North Carolina coastal region from the Virginia border to Cape Hatteras (NCnorth)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Baseline for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Baseline for the northern coast of Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the northern coast of Nantucket, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Baseline for the southern coast Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baseline for the southern coast of Nantucket, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color ...

Info
Baseline for the Virginia coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Baseline Northern Gulf of Mexico Oblique Photography Survey, February 7, 2012.

The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On February 7, 2012, the USGS conducted an oblique aerial photographic survey from Pensacola, Fla., to Breton Islands, La., aboard a Piper Navajo Chieftain at an altitude of 500 feet (ft) and approximately 1,000 ft offshore (Figure 2). This mission was flown to collect baseline data for assessing ...

Info
Baseline_OpenOcean.shp - Baseline Along the Open-Ocean (South-Facing) Coast of Dauphin Island, Alabama, Generated to Calculate Shoreline Change Rates.

Analysis of shoreline change for Dauphin Island, Alabama was conducted using the U.S. Geological Survey (USGS) Digital Shoreline Analysis System (DSAS) v.4.3 for ArcMap (Thieler and others, 2009) and vector shorelines derived from air photos and lidar elevation surveys. DSAS-generated transects were cast at 100-meter intervals along a user defined shore-parallel baseline. The intersections of transects with the mean high water (MHW) shoreline positions are identified by intercept points. The rate of ...

Info
Baselines for the coast of Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baselines for the coast of Nantucket, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Baselines for the Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1

The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline ...

Info
Bathymetric contours of the continental margin offshore of Washington, Oregon, and California based on data available in the late 1980s.

Bathymetric contours (contour interval 100 m) of the continental margin offshore of Washington, Oregon, and California (cowbat) were compiled from various sources available in the late 1980s and used to construct 1:1,000,000-scale maps (Chase and others, 1992a, 1992b; Grim and others, 1992). The contours range from 200 to 5300 m depth.

Info
Bathymetric grid (1000 m) of the continental margin offshore of Washington, Oregon, and California based on data available in the late 1980s.

Cowbatg.tif is a 1000-m resolution bathymetric grid of the continental margin offshore of Washington, California, and Oregon. The grid was generated from bathymetric contours (cowbathy.shp, also in this data set) mapped by Chase and others (1992a, b) and by Grim and others (1992) from various sources of bottom topography of the continental margin off the states of Washington, Oregon, and California.

Info
Bathymetric Grid for a Wave Exposure Model of Grand Bay, Mississippi

Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change they can also influence shore-proximal vertical accretion through sediment delivery. For these reasons, estimates of wave energy can provide a ...

Info
Bathymetry [2m]--Offshore of Monterey, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Bathymetry_2m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ...

Info
Bathymetry [5m]--Offshore of Monterey, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Bathymetry_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ...

Info
BathymetryA [2m]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ...

Info
BathymetryA Hillshade [2m]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ...

Info
BathymetryA Hillshade [USGS]--Offshore Aptos, California

This part of DS 781 presents data for the shaded-relief map of Offshore of Aptos map area, California. Shaded-relief data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryAHS_USGS_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ...

Info
BathymetryA [USGS]--Offshore Aptos, California

This part of DS 781 presents data for the bathymetry map of Offshore of Aptos map area, California. Bathymetry data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryA_USGS_OffshoreAptos.zip" which are accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S ...

Info
BathymetryB [5m]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ...

Info
BathymetryB [CSUMB]--Offshore Aptos, California

This part of DS 781 presents data for the bathymetry map of Offshore of Aptos map area, California. Bathymetry data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryB_CSUMB_OffshoreAptos.zip" which are accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S ...

Info
BathymetryB Hillshade [5m]--Monterey Canyon and Vicinity, California

This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ...

Info
BathymetryB Hillshade [CSUMB]--Offshore Aptos, California

This part of DS 781 presents data for the shaded-relief map of Offshore of Aptos map area, California. Shaded-relief data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryBHS_CSUMB_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ...

Info
Bathymetry--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the bathymetry map of Drakes Bay and Vicinity map area, California. The raster data file for the bathymetry map is included in "Bathymetry_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Bathymetry Hillsahde--Offshore of Tomales Point, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Tomales Point map area, California. Raster data file is included in "BathymetryHS_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., ...

Info
Bathymetry Hillshade [2m]--Offshore of Monterey, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "BathymetryHS_2m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ...

Info
Bathymetry Hillshade [5m]--Offshore of Monterey, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "BathymetryHS_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ...

Info
Bathymetry Hillshade--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the shaded-relief bathymetry map of Drakes Bay and Vicinity, California (raster data file is included in "BathymetryHS_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., Krigsman, ...

Info
Bathymetry Hillshade--Offshore Bolinas, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Bolinas, California. The raster data file is included in "BathymetryHS_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ...

Info
Bathymetry Hillshade--Offshore Half Moon Bay, California

This part of DS 781 presents data for the hillshaded bathymetry map of the Offshore Half Moon Bay map area, California. The raster data file is included in "BathymetryHS_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ...

Info
Bathymetry Hillshade--Offshore of Bodega Head, California

This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California. Raster data file is included in "BathymetryHS_OffshoreBodegaHead.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. The bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California, were generated from bathymetry data collected by California State University, Monterey Bay (CSUMB), and by ...

Info
Bathymetry Hillshade--Offshore of Carpinteria, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Carpinteria map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCarpinteria.zip." Both are accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., ...

Info
Bathymetry Hillshade--Offshore of Coal Oil Point, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G ...

Info
Bathymetry Hillshade--Offshore of Fort Ross, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Fort Ross map area, California. Raster data file is included in "Bathymetry_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ...

Info
Bathymetry hillshade--Offshore of Gaviota Map Area, California

This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Gaviota Map Area, California. The vector data file is included in "BathymetryHS_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of ...

Info
Bathymetry hillshade--Offshore of Point Conception Map Area, California

This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Point Conception Map Area, California. The vector data file is included in "Bathymetry_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ...

Info
Bathymetry Hillshade Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Point Reyes map area, California. Raster data file is included in "BathymetryHS_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/PointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, ...

Info
Bathymetry Hillshade--Offshore of Refugio Beach Area, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Refugio Beach map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B ...

Info
Bathymetry Hillshade--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Salt Point map area, California. The raster data file is included in "BathymetryHS_OffshoreSaltPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B ...

Info
Bathymetry Hillshade--Offshore of San Francisco, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of San Francisco, California, map area. The raster data file is included in "BathymetryHS_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W ...

Info
Bathymetry Hillshade--Offshore of Santa Barbara, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Santa Barbara map area, California. The raster data file for the hillshaded bathymetry map is included in "BathymetryHS_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., ...

Info
Bathymetry Hillshade--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Scott Creek, California. The raster data file is included in "BathymetryHS_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., ...

Info
Bathymetry Hillshade--Offshore of Ventura, California

This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Ventura map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., ...

Info
Bathymetry Hillshade--Offshore Pacifica, California

This part of DS 781 presents data for the hillshaded bathymetry map of Offshore Pacifica, California. The raster data file is included in "BathymetryHS_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., ...

Info
Bathymetry Hillshade--Offshore Pigeon Point, California

This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Pigeon Point, California. The raster data file is included in "BathymetryHS_OffshorePigeonPoint.zip", which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., Sliter, R.W ...

Info
Bathymetry Hillshade--Offshore San Gregorio, California

This part of SIM 3306 presents data for the shaded-relief bathymetry map of the Offshore of San Gregorio map area, California. The raster data file is included in "Bathymetry_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., ...

Info
Bathymetry Hillshade--Offshore Santa Cruz, California

This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Santa Cruz, California. The raster data file is included in "BathymetryHS_OffshoreSantaCruz.zip", which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., ...

Info
Bathymetry--Offshore Bolinas, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Bolinas, California. The raster data file is included in "Bathymetry_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., Kvitek, R.G., ...

Info
Bathymetry--Offshore Half Moon Bay, California

This part of DS 781 presents data for the bathymetry map of the Offshore Half Moon Bay, California. The raster data file is included in "Bathymetry_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J.T., Endris, C.A., ...

Info
Bathymetry--Offshore of Bodega Head, California

This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California. Raster data file is included in "Bathymetry_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ...

Info
Bathymetry--Offshore of Carpinteria, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Carpinteria map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCarpinteria.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G ...

Info
Bathymetry--Offshore of Coal Oil Point, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "Bathymetry_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, ...

Info
Bathymetry--Offshore of Fort Ross, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Fort Ross map area, California. Raster data file is included in "Bathymetry_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman ...

Info
Bathymetry--Offshore of Gaviota Map Area, California

This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Bathymetry_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota, ...

Info
Bathymetry--Offshore of Point Conception Map Area, California

This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Point Conception Map Area, California. The GeoTiff is included in "Bathymetry_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore ...

Info
Bathymetry Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Point Reyes map area, California. Raster data file is included in "Bathymetry_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/PointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Bathymetry--Offshore of Refugio Beach Area, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Refugio Beach map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., ...

Info
Bathymetry--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Salt Point map area, California. The raster data file is included in "Bathymetry_OffshoreSaltPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., ...

Info
Bathymetry--Offshore of San Francisco, California

This part of DS 781 presents data for the bathymetry map of the Offshore of San Francisco, California, map area. The raster data file is included in "Bathymetry_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., Kvitek, R.G., ...

Info
Bathymetry--Offshore of Santa Barbara, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Santa Barbara map area, California. The raster data file is included in "Bathymetry_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C ...

Info
Bathymetry--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the bathymetry map of Offshore Scott Creek, California. The raster data file is included in "Bathymetry_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., Finlayson, D.P., ...

Info
Bathymetry--Offshore of Tomales Point, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Tomales Point map area, California. Raster data file is included in "Bathymetry_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter ...

Info
Bathymetry--Offshore of Ventura, California

This part of DS 781 presents data for the bathymetry map of the Offshore of Ventura map area, California. The raster data file is included in "Bathymetry_OffshoreVentura.zip, which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., ...

Info
Bathymetry--Offshore Pacifica, California

This part of DS 781 presents data for the bathymetry map of Offshore Pacifica, California. The raster data file is included in "Bathymetry_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., Golden, N.E., Watt ...

Info
Bathymetry--Offshore Pigeon Point, California

This part of DS 781 presents data for the bathymetry map of Offshore Pigeon Point, California. The raster data file is included in "Bathymetry_OffshorePigeonPoint.zip", which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., Finlayson, D.P ...

Info
Bathymetry--Offshore San Gregorio, California

This part of SIM 3306 presents data for the bathymetry map of the Offshore of San Gregorio map area, California. The raster data file is included in "Bathymetry_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey, M.D., ...

Info
Bathymetry--Offshore Santa Cruz, California

This part of DS 781 presents data for the bathymetry map of Offshore Santa Cruz, California. The raster data file is included in "Bathymetry_OffshoreSantaCruz.zip", which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., and Krigsman, L.M. ...

Info
Beach foreshore slope for the East Coast of the United States

This data release contains foreshore slopes for primarily open-ocean sandy beaches along the East Coast of the United States (Maine through Florida). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 1997 and 2018. The shoreline positions have been previously published, but the slopes have not. An along-shore reference baseline was defined, and then 20-meter spaced cross-shore beach transects were created perpendicular to the baseline. All data ...

Info
Beach foreshore slope for the West Coast of the United States (ver. 1.1, September 2024)

This data release contains foreshore slopes for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined and then evenly-spaced cross-shore beach transects were created. Then all data points within 1 meter of each ...

Info
Bedrock Data from Western Cape Cod, Massachusetts (WELLSITE shapefile, Geographic, NAD27)

Cores collected from recent drilling in western Cape Cod, Massachusetts provide insight into the topography and petrology of the underlying bedrock. Cores from 64 drill sites spread over a approximately 140 km2 study area produced samples of granitoids (31), orthogneisses (20), basalts/diabases (4), amphibolites (3), felsic mylonites (2), and dolomitic rock (2). Granitoid composition ranges from granite to tonalite and quartz diorite, but it is dominated by two-feldspar granites. Hydrothermal alteration ...

Info
Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the central coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the northern coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the western coast of North Carolina from Cape Fear to the South Carolina border (NCwest)

The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This ...

Info
Bias Feature for the Florida east coast (FLec) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Bias Feature for the Florida panhandle (FLph) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Bias Feature for the Florida west coast (FLwc) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Bias Feature for the Georgia coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion ...

Info
Biomarker analysis of cold seeps along the United States Atlantic Margin

Results of lipid biomarker concentration and compound specific isotopes analyzed from authigenic carbonates and surrounding sediment collected from Baltimore and Norfolk seep fields along the United States Atlantic Margin are presented in csv format. Samples were collected by the U.S. Geological Survey and Duke University between 2012 and 2015 using remotely operated vehicles (ROVs). Geochemical analysis was performed using gas chromatography (GC) and GC-combustion isotope ratio mass spectrometry (GC-C-IRMS ...

Info
Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site

This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been numbered to indicate combinations of seafloor hardness, ruggedness and depth associated with biotopes derived by analysis of video data as described in the accompanying Open-File Report (Cochrane and others, 2017). The map was created using video and multibeam echosounder bathymetry and backscatter data collected in 2014 and processed in 2015 ...

Info
Bottom photographs collected in the Cape Ann - Salisbury Beach Massachusetts Survey Area (SEABOSS_Photos)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
Bottom Photographs in JPEG format acquired using a SEABed Observation and Sampling System (SEABOSS) within Barnegat Bay New Jersey by the U.S. Geological Survey in 2012, and 2013

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, ...

Info
Bottom photographs (JPEG format) collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SEABOSS_Photos)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ...

Info
Breton Island, Louisiana Baseline (Geographic, NAD83)

Breton Island, Louisiana Baseline (Geographic, NAD83) consists of vector line data that were input into the Digital Shoreline Analysis System (DSAS) version 4.0, which is computer software used to compute rate of change statistics. A baseline was acquired from the Barrier Island Comprehensive Monitoring Program (BICM) 2009 report (http://lacoast.gov/reports/project/3890772~1.pdf). The baseline included in the BICM report covered the entire Louisiana coastline, so the baseline representing Breton Island had ...

Info
Breton Island, Louisiana Transects with Shoreline Change Rates (1869 - 2014) (Geographic, NAD83)

Breton Island, Louisiana Transects with Shoreline Change Rates (1869 - 2014) (Geographic, NAD83) consists of vector transect data that were derived from the Digital Shoreline Analysis System (DSAS) version 4.0. Rates from the DSAS statistical output table were joined to the transects to provide a visual representation of the shoreline change rates on a transect-by-transect basis.

Info
Breton Island, Louisiana Transects with Shoreline Change Rates (Post-1950s) (Geographic, NAD83)

Breton Island, Louisiana Transects with Shoreline Change Rates (Post-1950s) (Geographic, NAD83) consists of vector transect data that were derived from the Digital Shoreline Analysis System (DSAS) version 4.0. Rates from the DSAS statistical output table were joined to the transects to provide a visual representation of the shoreline change rates on a transect-by-transect basis.

Info
Breton Island, Louisiana Transects with Shoreline Change Rates (Post Hurricane Katrina) (Geographic, NAD83)

Breton Island, Louisiana Transects with Shoreline Change Rates (Post Hurricane Katrina) (Geographic, NAD83) consists of vector transect data that was derived from the Digital Shoreline Analysis System (DSAS) version 4.0. Rates from the DSAS statistical output table were joined to the transects to provide a visual representation of the shoreline change rates on a transect-by-transect basis.

Info
Breton Island Transects with Shoreline Change Rates (Pre-1950s) (Geographic, NAD83)

Breton Island, Louisiana Transects with Shoreline Change Rates (Pre-1950s) (Geographic, NAD83) consists of vector transect data that were derived from the Digital Shoreline Analysis System (DSAS) version 4.0. Rates from the DSAS statistical output table were joined to the transects to provide a visual representation of the shoreline change rates on a transect-by-transect basis.

Info
Breton Island Transects with Shoreline Change Rates (Pre/Post Hurricane Katrina) (Geographic, NAD83)

Breton Island, Louisiana Transects with Shoreline Change Rates (Pre/Post Hurricane Katrina) (Geographic, NAD83) consists of vector transect data that were derived from the Digital Shoreline Analysis System (DSAS) version 4.0. Rates from the DSAS statistical output table were joined to the transects to provide a visual representation of the shoreline change rates on a transect-by-transect basis.

Info
California State Waters Map Series--Bolinas to Pescadero Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Drakes Bay Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Drakes Bay Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Hueneme Canyon Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Hueneme Canyon Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Monterey Canyon and Vicinity Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Monterey Canyon and Vicinity Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Bodega Head Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Bodega Head Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Bolinas Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Bolinas Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Carpinteria Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Carpinteria Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Coal Oil Point Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Coal Oil Point Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Fort Ross Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Fort Ross Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Gaviota Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Gaviota Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Half Moon Bay Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Half Moon Bay Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Monterey Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Monterey Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Pacifica Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Pacifica Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Point Conception Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Point Conception Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Point Reyes Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Point Reyes Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Refugio Beach Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Refugio Beach Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Salt Point Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Salt Point Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of San Francisco Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of San Francisco Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of San Gregorio Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of San Gregorio Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Santa Barbara Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Santa Barbara Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Santa Cruz Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Santa Cruz Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Tomales Point Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Tomales Point Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Ventura Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Offshore of Ventura Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Pigeon Point to Monterey Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Pigeon Point to Monterey Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Point Conception to Hueneme Canyon Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Point Conception to Hueneme Canyon Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Point Sur to Point Arguello Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Point Sur to Point Arguello Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Punta Gorda to Point Arena Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Punta Gorda to Point Arena Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Salt Point to Drakes Bay Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Salt Point to Drakes Bay Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Santa Barbara Channel Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
California State Waters Map Series--Santa Barbara Channel Web Services

In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ...

Info
CENCAL_BASELINE - Offshore Baseline for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_BIASVALUES - Central California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
CENCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Central California Generated at a 50 m Transect Spacing, 1853-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Central California Generated at a 50m Transect Spacing, 1971-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
Census counts of benthic foraminifera, environmental parameters (temperature, salinity, and oxygen concentration), and radiocarbon measurements from cores obtained under and near a whale-fall off western Vancouver Island, British Columbia, Canada

This data release provides census counts of benthic foraminifera (in percent for the total fauna and as raw counts for just the living specimens) as well as environmental parameters (temperature, salinity, and oxygen concentration) at the sampling sites, and radiocarbon measurements from selected push core samples obtained under and near a whale-fall off western Vancouver Island, British Columbia, Canada.

Info
Census counts of benthic foraminifera from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay

This data release provides census counts of benthic foraminifera in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay.

Info
Census counts of diatoms from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay

This data release provides census counts of diatoms in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay.

Info
Census counts of palynomorphs from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay

This data release provides census counts of palynomorphs in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay.

Info
Census counts of the non-indigenous benthic foraminifera Trochammina hadai Uchio obtained in 1983-2010 in San Francisco Bay, California

This data release provides census counts of the non-indigenous benthic foraminifera Trochammina hadai Uchio in surface sediment samples obtained in San San Francisco Bay, California from 1983-2010.

Info
CentralBeaufort_shorelines.shp - Shorelines for the northern Alaska coastal region used in shoreline change analysis, 1947 to 2007

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Change in salinity exposure of salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey during Hurricane Sandy

As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey is expanding National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate the vulnerability of coastal wetlands to various factors and to evaluate their ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their ...

Info
Change in salinity in salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey during Hurricane Sandy

As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey is expanding National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate the vulnerability of coastal wetlands to various factors and to evaluate their ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their ...

Info
Change in suspended sediment concentration over the salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey during Hurricane Sandy

As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey is expanding National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate the vulnerability of coastal wetlands to various factors and to evaluate their ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their ...

Info
Chincoteague Bay surface carbon and nitrogen data from the fall sampling trip of 2014

Following Hurricane Sandy, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of estuarine, marsh, and sandy overwash surface sediments from Chincoteague Bay, Tom’s Cove, and the surrounding Assateague Island and Delmarva Peninsula in March–April and October 2014. Surplus surface sediment was analyzed for metals, percent carbon and nitrogen, d13C, and d15N as part of a complementary U.S. Geological Survey Coastal and Marine ...

Info
Chincoteague Bay surface carbon and nitrogen data from the spring sampling trip of 2014

Following Hurricane Sandy, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of estuarine, marsh, and sandy overwash surface sediments from Chincoteague Bay, Tom’s Cove, and the surrounding Assateague Island and Delmarva Peninsula in March–April and October 2014. Surplus surface sediment was analyzed for metals, percent carbon and nitrogen, d13C, and d15N as part of a complementary U.S. Geological Survey Coastal and Marine ...

Info
Chincoteague Bay surface metals data from the fall sampling trip of 2014

Following Hurricane Sandy, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of estuarine, marsh, and sandy overwash surface sediments from Chincoteague Bay, Tom’s Cove, and the surrounding Assateague Island and Delmarva Peninsula in March–April and October 2014. Surplus surface sediment was analyzed for metals, percent carbon and nitrogen, ?13C, and ?15N as part of a complementary U.S. Geological Survey Coastal and Marine ...

Info
Chincoteague Bay surface metals data from the spring sampling trip of 2014

Following Hurricane Sandy, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of estuarine, marsh, and sandy overwash surface sediments from Chincoteague Bay, Tom’s Cove, and the surrounding Assateague Island and Delmarva Peninsula in March–April and October 2014. Surplus surface sediment was analyzed for metals, percent carbon and nitrogen, ?13C, and ?15N as part of a complementary U.S. Geological Survey Coastal and Marine ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of Arcata, California

This substrate, geomorphic, and geologic attributed polygon shapefile in the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). The map area is one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of Cape Mendocino

This shapefile has substrate, geomorphic, and geologic attributed polygons in the Offshore of Cape Mendocino, California, map area, one of 83 map areas of the California State Waters Map Series, USGS Data Series 781 (Golden, 2019). The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; Federal ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of Eureka, California

This substrate, geomorphic, and geologic attributed polygon shapefile in the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). The map area is one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of Morro Bay (ver. 1.1, January 2024)

This part of USGS Data Series 781 presents substrate, geomorphic, and geologic attributed polygons in the Offshore of Morro Bay, California, map area, one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of Point Buchon (ver. 1.1, January 2024)

This shapefile has substrate, geomorphic, and geologic attributed polygons in the Offshore of Point Buchon, California, map area, one of 83 map areas of the California State Waters Map Series, USGS Data Series 781 (Golden and Cochrane, 2019). The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of Point Estero (ver. 1.1, November 2023)

This substrate, geomorphic, and geologic attributed polygon shapefile in the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). The map area is one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification ...

Info
CMECS geoform, CMECS substrate, and surficial geology offshore of the Eel River

This part of USGS Data Series 781 presents substrate, geomorphic, and geologic attributed polygons in the Offshore of the Eel River, California, map area, one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data ...

Info
CMECS geoform, substrate, and biotopes offshore of Burien, Washington

This part of USGS Data Series 935 (Cochrane, 2014) presents substrate, geomorphic, and biotope data in the Offshore of Burien, Washington, map area, a part of the Southern Salish Sea Habitat Map Series. Given the variable bathymetric resolution, the complex geologic history of the region, and the lack of acoustic backscatter data, automated and semi-automated classification schemes of classifying seafloor substrate and geoform were deemed to have very low accuracy. Instead, classification of these ...

Info
CMECS geoform, substrate, and biotopes offshore of Seattle, Washington

This part of USGS Data Series 935 (Cochrane, 2014) presents substrate, geomorphic, and biotope data in the Offshore of Seattle, California, map area, a part of the Southern Salish Sea Habitat Map Series. Given the variable bathymetric resolution, the complex geologic history of the region, and the lack of acoustic backscatter data, automated and semi-automated classification schemes of classifying seafloor substrate and geoform were deemed to have very low accuracy. Instead, classification of these ...

Info
CMECS geoform, substrate, and biotopes offshore of Tacoma, Washington

This part of USGS Data Series 935 (Cochrane, 2014) presents substrate, geomorphic, and biotope data in the Offshore of Tacoma, Washington, map area, a part of the Southern Salish Sea Habitat Map Series. Given the variable bathymetric resolution, the complex geologic history of the region, and the lack of acoustic backscatter data, automated and semi-automated classification schemes of classifying seafloor substrate and geoform were deemed to have very low accuracy. Instead, classification of these ...

Info
Coastal Groundwater Chemical Data from the North and South Shores of Long Island, New York

Groundwater data were collected in the spring and fall of 2008 from three sites representing different geological settings and biogeochemical conditions within the surficial glacial aquifer of Long Island, NY. Investigations were designed to examine the extent to which average vadose zone thickness in contributing watersheds controlled biogeochemical conditions and processes, including dissolved oxygen concentration (DO), oxidation-reduction potential (Eh), dissolved organic carbon concentration (DOC), and ...

Info
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation

Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ...

Info
Cold-water coral microbiomes (Lophelia pertusa) from Gulf of Mexico and Atlantic Ocean: raw data

The files in this data release are the raw deoxyribonucleic acid (DNA) sequence files referenced in the submitted journal article by Christina A. Kellogg, Dawn B. Goldsmith and Michael A. Gray entitled "Biogeographic comparison of Lophelia-associated bacterial communities in the western Atlantic reveals conserved core microbiome". They represent a 16S ribosomal ribonucleic acid (rRNA) gene amplicon survey of the coral’s microbiomes completed using Roche 454 pyrosequencing with Titanium series reagents. ...

Info
Collection, analysis, and age-dating of sediment cores from a salt marsh platform and ponds, Rowley, Massachusetts, 2014-15

Sediment cores were collected from three sites within the Plum Island Ecosystems Long-Term Ecological Research (PIE-LTER) domain in Massachusetts to obtain estimates of long-term marsh decomposition and evaluate shifts in the composition and reactivity of sediment organic carbon in disturbed marsh environments. Paired sediment cores were collected from three sites on the marsh platform and from three ponds; these cores were about 100 and 50 centimeters in length, respectively. The marsh sites had similar ...

Info
Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015–17

The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which plans to ...

Info
Collection, analysis, and age-dating of sediment cores from mangrove and salt marsh ecosystems in Tampa Bay, Florida, 2015

Coastal wetlands in Tampa Bay, Florida, are important ecosystems that deliver a variety of ecosystem services. Key to ecosystem functioning is wetland response to sea-level rise through accumulation of mineral and organic sediment. The organic sediment within coastal wetlands is composed of carbon sequestered over the time scale of the wetland’s existence. This study was conducted to provide information on soil accretion and carbon storage rates across a variety of coastal ecosystems that was utilized in ...

Info
Collection, analysis, and age-dating of sediment cores from mangrove wetlands in San Juan Bay Estuary, Puerto Rico, 2016

The San Juan Bay Estuary, Puerto Rico, contains mangrove forests that store significant amounts of organic carbon in soils and biomass. There is a strong urbanization gradient across the estuary, from the highly urbanized and clogged Caño Martin Peña in the western part of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part with limited urbanization. We collected sediment cores to determine carbon burial rates and vertical ...

Info
Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16

Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered, natural downstream sites provide a comparison against the historically restricted upstream sites. The sampled cores ...

Info
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes, Rhode Island, 2016

The accretion history of fringing salt marshes in Narragansett Bay, Rhode Island, was reconstructed from sediment cores. Age models, based on excess lead-210 and cesium-137 radionuclide analysis, were constructed to evaluate how vertical accretion and carbon burial rates have changed during the past century. The Constant Rate of Supply (CRS) age model was used to date six cores collected from three salt marshes. Both vertical accretion rates and carbon burial increased from 1900 to 2016, the year the data ...

Info
Color coded bathmetry map of Cape Canaveral, Florida, derived from boat based sounding data (2014)

The Cape Canaveral Coastal System (CCCS) is a prominent feature along the Southeast U.S. coastline and is the only large cape south of Cape Fear, North Carolina. Most of the CCCS lies within the Merritt Island National Wildlife Refuge and included in its boundaries are the Cape Canaveral Air Force Station (CCAFS), NASA’s Kennedy Space Center (KSC), and a large portion of Canaveral National Seashore. The actual promontory of the modern cape falls within the jurisdictional boundaries of the CCAFS. These ...

Info
Comma-delimited Text File of the Descriptive Logs of Cores Collected August, 2006 in the Nauset Marsh Area of Cape Cod, Massachusetts

In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ...

Info
Comma-delimited Text File of the Geoprobe Results Collected August, 2005 from the Nauset Marsh Area of Cape Cod, Massachusetts

In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ...

Info
Comma-delimited Text File of the Porewater Salinity Values of Cores Collected August, 2006 in the Nauset Marsh Area of Cape Cod, Massachusetts

In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ...

Info
Comma delimited text files and JPEG images of sound velocity profiles collected by the USGS within Red Brook Harbor, MA, 2009

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ...

Info
Comparison of methane concentration and stable carbon isotope data for natural samples analyzed by discrete sample introduction module - cavity ring down spectroscopy (DSIM-CRDS) and traditional methods

A discrete sample introduction module (DSIM) was developed and interfaced to a cavity ring-down spectrometer to enable measurements of methane and CO2 concentrations and 13C values with a commercially available cavity ring-down spectrometer (CRDS). The DSIM-CRDS system permits the analysis of limited volume (5 - 100-ml) samples ranging six orders-of-magnitude from 100% analyte to the lower limit of instrument detection (2 ppm). We demonstrate system performance for methane by comparing concentrations and ...

Info
Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia

The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy ...

Info
Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts

The salt marsh complex of Cape Cod National Seashore (CACO), Massachusetts, USA and approximal wetlands were delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the ...

Info
Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York

The salt marsh complex of Fire Island National Seashore (FIIS) and central Great South Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy ...

Info
Conceptual marsh units for Jamaica Bay to western Great South Bay salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy ...

Info
Conceptual marsh units for Plum Island Estuary and Parker River salt marsh complex, Massachusetts

The salt marsh complex of Plum Island Estuary and Parker River (PIEPR) was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location was used to determine the ridge lines that separate each marsh unit while the surface slope was used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. ...

Info
Conceptual marsh units of Blackwater salt marsh complex, Chesapeake Bay, Maryland

This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to ...

Info
Conceptual marsh units of Chesapeake Bay salt marshes

This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing ...

Info
Conceptual marsh units of Connecticut salt marshes

This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change ...

Info
Conceptual marsh units of eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024)

This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with ...

Info
Conceptual marsh units of Hudson Valley and New York City salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey ...

Info
Conceptual marsh units of Maine salt marshes

This data release contains coastal wetland synthesis products for the state of Maine. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, and lifespan, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the ...

Info
Conceptual marsh units of Massachusetts salt marshes

This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal ...

Info
Conceptual marsh units of north shore Long Island salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been ...

Info
Conceptual marsh units of salt marshes on the Eastern Shore of Virginia

This data release contains coastal wetland synthesis products for the Atlantic-facing Eastern Shore of Virginia (the data release for the Chesapeake Bay-facing portion of the Eastern Shore of Virginia is found here: https://doi.org/10.5066/P997EJYB). Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland ...

Info
Continuous Monitoring Data From Great Barnstable Marsh on Cape Cod, Massachusetts, 2017-19

Salt marshes are environmental ecosystems that contribute to coastal landscape resiliency to storms and rising sea level. Ninety percent of mid-Atlantic and New England salt marshes have been impacted by parallel grid ditching that began in the 1920s–40s to control mosquito populations and to provide employment opportunities during the Great Depression (James-Pirri and others, 2009; Kennish, 2001). Continued alteration of salt marsh hydrology has had unintended consequences for salt marsh sustainability ...

Info
Continuous Monitoring Data From Herring River Wetlands, Cape Cod, Massachusetts, 2015 to January 2020

The Herring River estuary (Wellfleet, Cape Cod, Massachusetts) has been tidally restricted for over a century by a dike constructed near the mouth of the river. Behind the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which has plans to replace the dike and ...

Info
Continuous Monitoring Data From Natural and Restored Salt Marshes on Cape Cod, Massachusetts, 2016-17

Continuous monitoring data reported are a portion of data from a larger study investigating changes in soil properties, carbon accumulation, and greenhouse gas fluxes in four recently restored salt marsh sites and nearby natural salt marshes. For several decades, local towns, conservation groups, and government organizations have worked to identify, replace, repair, and enlarge culverts to restore tidal flow upstream from historical tidal restrictions in an effort to restore salt marsh ecosystems on Cape ...

Info
Continuous Resistivity Profiling, Electrical Resistivity Tomography and Hydrologic Data Collected in 2017 from Indian River Lagoon, Florida

Extending 200 kilometers (km) along the Atlantic Coast of Central Florida, Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States. The lagoon is characterized by shallow, brackish waters and a width that varies between 0.5 and 9.0 km; there is significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center used continuous resistivity profiling (CRP, a towed ...

Info
Continuous Water Level, Salinity, and Temperature Data from Creeks and Monitoring Wells in Natural and Restored Wetlands on Cape Cod, Massachusetts, 2019

Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between wetland sites with differing elevation and tidal inundation and (2) facilitate applications of Blue Carbon projects in ...

Info
Continuous Water Level, Salinity, and Temperature Data from Monitoring Wells in Herring River Wetlands, Cape Cod, Massachusetts, 2020-2021

Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between wetland sites with differing elevation and tidal inundation and (2) facilitate applications of Blue Carbon projects in ...

Info
Continuous Water Level, Salinity, and Temperature Data from Monitoring Wells in Wetlands on the South Shore of Cape Cod, Massachusetts, 2020

Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between wetland sites with differing elevation and tidal inundation and (2) facilitate applications of Blue Carbon projects in ...

Info
Contour--Offshore of Gaviota Map Area, California

This part of DS 781 presents data for bathymetric contours for several seafloor maps of the Offshore of Gaviota Map Area, California. The vector data file is included in "Contours_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore ...

Info
Contour--Offshore of Point Conception Map Area, California

This part of DS 781 presents data for bathymetric contours for several seafloor maps of the Offshore of Point Conception Map Area, California. The vector data file is included in "Contours_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map ...

Info
Contours--Drakes Bay and Vicinity, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Contours_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ...

Info
Contours--Offshore Aptos, California

This part of DS 781 presents data for the bathymetric contours for the Offshore of Aptos map area, California. The vector data file is included in "Contours_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., Finlayson, ...

Info
Contours--Offshore Coal Oil Point, California

This part of DS 781 presents bathymetric contours for several seafloor maps of Offshore Coal Oil Point, California. The vector data file is included in "Contours_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman ...

Info
Contours--Offshore Monterey, California

This part of DS 781 presents bathymetric contours for several seafloor maps of the Offshore of Monterey map area, California. This metadata file refers to the data included in "Contours_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson ...

Info
Contours-Offshore of Bodega Head, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bodega Head map area, California. The vector data file is included in "Contours_OffshoreBodegaHead.zip," which is accessible https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A ...

Info
Contours--Offshore of Bolinas, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bolinas map area, California. The vector data file is included in "Contours_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, ...

Info
Contours--Offshore of Carpinteria, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Carpinteria map area, California. The vector data file is included in "Contours_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., ...

Info
Contours--Offshore of Fort Ross, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Fort Ross map area, California. The vector data file is included in "Contours_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ...

Info
Contours--Offshore of Half Moon Bay, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Half Moon map area, California. The vector data file is included in "Contours_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross ...

Info
Contours--Offshore of Pacifica, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Pacifica map area, California. The vector data file is included in "Contours_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E. ...

Info
Contours Offshore of Point Reyes Map Map Area, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Point Reyes map area, California. The vector data file is included in "Contours_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C ...

Info
Contours--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Salt Point map area, California. The vector data file is included in "Contours_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C ...

Info
Contours--Offshore of San Francisco, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of San Francisco map area, California. The vector data file is included in "Contours_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W. ...

Info
Contours--Offshore of San Gregorio, California

This part of SIM 3306 presents data for the bathymetric contours for several seafloor maps of the Offshore of San Gregorio map area, California. The vector data file is included in "Contours_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., ...

Info
Contours--Offshore of Santa Barbara, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Santa Barbara map area, California. The vector data file is included in "Contours_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, ...

Info
Contours--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Scott Creek map area, California. The vector data file is included in "Contours_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., ...

Info
Contours Offshore of Tomales Point, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Tomales Point map area, California. The vector data file is included in "Contours_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., ...

Info
Contours--Offshore of Ventura, California

This part of DS 781 presents data for the bathymetric contours of the Offshore of Ventura map area, California. The vector data file is included in "Contours_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I ...

Info
Contours--Offshore Pigeon Point, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Pigeon Point map area, California. The vector data file is included in "Contours_OffshorePigeonPoint.zip", which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., ...

Info
Contours--Offshore Refugio Beach, California

This part of DS 781 presents bathymetric contours for several seafloor maps of the Offshore of Refugio Beach, California, map area. The vector data file is included in "Contours_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.ov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, ...

Info
Contours--Offshore Santa Cruz, California

This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Santa Cruz map area, California. The vector data file is included in "Contours_OffshoreSantaCruz.zip", which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., ...

Info
Coral cores collected in Dry Tortugas National Park, Florida, U.S.A.: Photographs and X-rays

Cores from living coral colonies were collected from Dry Tortugas National Park, Florida, to obtain skeletal records of past coral growth and allow geochemical reconstruction of environmental variables during the corals’ centuries-long lifespans. The samples were collected as part of the U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/) that provides science to assist resource managers tasked with the stewardship of coral reef resources. Three colonies ...

Info
Coral geochemistry time series from Kahekili, west Maui

Geochemical analysis (including stable boron, boron:calcium ratio, and carbon and oxygen isotopes) were measured from coral cores collected in July 2013 from the shallow reef at Kahekili in Kaanapali, west Maui, Hawaii from scleractinian Porites lobata.

Info
Coral growth parameters, Kahekili, west Maui

Surface runoff and submarine groundwater discharge in particular are known vectors to the coastal ocean of elevated nutrients and contaminants leading to eutrophication, algal overgrowth, and coral disease. Freshwater discharging directly from submarine groundwater vents off of Kahekili Beach Park, Kaanapali, in West Maui contains elevated nutrient concentrations and lower pH values. Coral cores were collected in July 2013 from the shallow reef at Kahekili in Kaanapali, West Maui, Hawaii from ...

Info
CTD profile measurements collected off California and Oregon during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA) from October to November 2019

CTD (Conductivity Temperature Depth) data were collected offshore of California and Oregon from October to November 2019 during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA). This data release supersedes version 1.0, published in August 2020 at https://doi.org/10.5066/P9ZS1JX8. Versioning details are documented in the accompanying VersionHistory_P9JKYWQU.txt file.

Info
CTD profile measurements collected off California and Oregon during NOAA cruise SH-18-12 (USGS field activity 2018-663-FA) from October to November 2018

CTD (Conductivity Temperature Depth) data were collected offshore of California and Oregon from October to November 2018 during NOAA cruise SH-18-12 on the R/V Bell M. Shimada (USGS field activity 2018-663-FA). This data release supersedes version 2.0, published in September 2021 at https://doi.org/10.5066/P99DIQZ5. Versioning details are documented in the accompanying VersionHistory_P99MJ096.txt file.

Info
CURRENT AND SEDIMENT TRANSPORT STUDIES ON GEORGES BANK

A collection of time-series oceanographic data was obtained from locations on Georges Bank and adjacent continental shelf between 1975 and 1984. Measurements available include current, temperature, pressure, light transmission (beam attenuation). The time series is not continuous at any specific location.

Info
Data and calculations to support the study of the sea-air flux of methane and carbon dioxide on the West Spitsbergen margin in June 2014

A critical question for assessing global greenhouse gas budgets is how much of the methane that escapes from seafloor cold seep sites to the overlying water column eventually crosses the sea-air interface and reaches the atmosphere. The issue is particularly important in Arctic Ocean waters since rapid warming there increases the likelihood that gas hydrate--an ice-like form of methane and water stable at particular pressure and temperature conditions within marine sediments--will break down and release its ...

Info
Data for evaluating the Sr/Ca temperature proxy with in-situ temperature in the western Atlantic coral Siderastrea siderea

Massive corals are used as environmental recorders throughout the tropics and subtropics to study environmental variability during time periods preceding ocean-observing instrumentation. However, careful testing of paleoproxies is necessary to validate the environmental-proxy record throughout a range of conditions experienced by the recording organisms. As part of the USGS Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/), we tested the hypothesis that the coral Siderastrea siderea ...

Info
Data tables for the Long Island Sound and New York Bight database

Detailed chemical, station (source and documentation, sample locations), and texture data are provided for sediments in Long Island Sound and New York Bight. The sediment data are provided as spreadsheet (Microsoft Excel) and tab-delimited files on the web site. These data are in the form of sections within the web site, which provides extensive supporting data, interpretive diagrams, and discussion. The data were obtained from a variety of sources: published reports, theses, unpublished data from agencies ...

Info
Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ...

Info
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ...

Info
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) ...

Info
Depth to base of last glacial maximum point data in California State Waters between Refugio and Hueneme Canyon, California (sbsedbsmpt).

As part of the USGS's California State Waters Mapping Project, depth to base of last glacial maximum within the 3-nautical mile limit between Gaviota and Hueneme Canyon was extracted from seismic-reflection data collected in 2007 (USGS activity (Z-3-07-SC) and 2008 (S-7-08-SC). Depths range from 7 to 568 m with a mean of 67 m and a standard deviation of 65 m.

Info
Depth to Transition--Bolinas to Pescadero, California

This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "DepthToTransition_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ...

Info
Depth to Transition--Pigeon Point to Monterey, California

This part of DS 781 presents data for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "DepthToTransition_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ...

Info
Depth to Transition--Point Conception to Hueneme Canyon, California

This part of DS 781 presents data for the depth-to-transition map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "DepthToTransition_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ...

Info
Depth to Transition—Point Sur to Point Arguello, California

This part of DS 781 presents data for the depth-to-transition map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “DepthToTransition_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ...

Info
Depth to Transition--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ...

Info
Depth to Transition--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ...

Info
Depth to Transition--Salt Point to Drakes Bay, California

This part of DS 781 presents data for the depth-to-transition map of the Salt Point to Drakes Bay, California, region. The raster data file is included in "DepthToTransition_SaltPointToDrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/SaltPointToDrakesBay/data_catalog_SaltPointToDrakesBay.html. As part of the USGS's California State Waters Mapping Project, a 20-m grid of depth to the transgressive surface of the last glacial maximum was generated for the areas within the 3-nautical mile ...

Info
Depth to transition--Santa Barbara Channel, California

This part of DS 781 presents data for the depth-to-transition (the depth to the bedrock at the Last Glacial Maximum) map of the Santa Barbara Channel, California, region. The raster data file is included in "DepthToTransition_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial ...

Info
Development: Development delineation: Assateague Island, MD & VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Assawoman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Cape Hatteras, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Cape Lookout, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Coast Guard Beach, MA, 2013-2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Edwin B. Forsythe NWR, NJ, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Edwin B. Forsythe NWR, NJ, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Edwin B. Forsythe NWR, NJ, 2013–2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Fire Island, NY, 2010–2011

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Fire Island, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Fire Island, NY, 2014–2015

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Parker River, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Rhode Island National Wildlife Refuge, RI, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Rockaway Peninsula, NY, 2010–2011

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Rockaway Peninsula, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Development: Development delineation: Rockaway Peninsula, NY, 2013–2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Digital data for depth to basement in the deep-sea basins of the Pacific continental margin (cowbsm) based on data collected in 1984.

Digital vector data for the contours of depth to basement for the deep-sea basins of the Pacific continental margin offshore of Washington, Oregon, and California. The data were interpreted from GLORIA (Paskevich and others, 2011) sidescan data and related seismic-reflection data. The data were published as USGS maps in paper format (Gardner and others, 1992, 1993a, 1993b).

Info
Digital data for sediment thickness in the deep-sea basins of the Pacific continental margin based on 1984 surveys

Contours of sediment thickness for the deep-sea basins of the Pacific continental margin offshore of Washington, Oregon, and California were were interpreted from GLORIA (Paskevich and others, 2011) sidescan imagery and related seismic-reflection data and were published as maps in paper format (Gardner and others, 1992, 1993a, 1993b).

Info
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution.

Info
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata.

Info
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ...

Info
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ...

Info
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ...

Info
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata.

Info
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ...

Info
Digital Polymerase Chain Reaction (dPCR) Data from the Sediment-Bound Contaminant Resiliency and Response Strategy Pilot Study, Northeastern United States, 2015

Due to the recognized proliferation and spread of antibiotic resistance genes by anthropogenic use of antibiotics for human, agriculture and aquaculture purposes, antibiotic resistance genes have been defined as an emerging contaminant (Laxminarayan and others, 2013; Rodriguez-Rojas and others, 2013; Niu and others, 2016). The presence and spread of these genes in non-clinical and non-agricultural environments has created the need for background investigations to enhance our understanding of the magnitude ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ...

Info
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data

This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for exposed shorelines between Point Barrow and Icy Cape for the time period 1947 to 2012

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for exposed shorelines between the Colville River Delta and Point Barrow for the time period 1947 to 2005

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for exposed shorelines between the Okpilak-Hulahula River Delta and Colville River Delta for the time period 1947 to 2007

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for exposed shorelines between the U.S.-Canadian border and the Okpilak-Hulahula river delta for the time period 1947 to 2003

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for sheltered shorelines between Point Barrow and Icy Cape for the time period 1947 to 2012

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for sheltered shorelines between the Colville River Delta and Point Barrow for the time period 1947 to 2005

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for sheltered shorelines between the Okpilak-Hulahula River Delta and Colville River Delta for the time period 1947 to 2007

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 transects with end-point rate calculations for sheltered shorelines between the U.S.-Canadian border and the Okpilak-Hulahula River Delta for the time period 1947 to 2003

The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and encompasses unique habitats of global significance. Coastal erosion along the north coast of Alaska is chronic, widespread, may be accelerating, and is threatening defense and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed Central Beaufort Sea coast of Alaska between the Hulahula River and the Colville River

This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the Hulahula River and the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2010. A reference baseline was used as ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2010. A reference baseline was ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape

This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the originating ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed West Beaufort Sea coast of Alaska between the Colville River and Point Barrow

This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between the Colville River and Point Barrow. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Sheltered Central Beaufort Sea coast of Alaska between the Hulahula River and the Colville River

This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the Hulahula River and the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2010. A reference baseline was used as ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2010. A reference baseline was ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Sheltered East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape

This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the originating ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Sheltered West Beaufort Sea coast of Alaska between the Colville River and Point Barrow

This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between the Colville River and Point Barrow. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term End Point Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape

This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using an end point rate-of-change method based on available shoreline data between 1979 and 2011. A reference baseline was used as the originating point ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term End Point Rate Calculations for the Sheltered East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape

This dataset consists of short-term (~33 years) shoreline change rates for the north coast of Alaska between Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using an end point rate-of-change method based on available shoreline data between 1979 and 2012. A reference baseline was used as the originating point ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed Central Beaufort Sea coast of Alaska between the Hulahula River and the Colville River

This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Hulahula River and the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape

This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed West Beaufort Sea coast of Alaska between the Colville River and Point Barrow

This dataset consists of short-term (~33 years) shoreline change rates for the north coast of Alaska between the Colville River and Point Barrow. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2012. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered Central Beaufort Sea coast of Alaska between the Hulahula River and the Colville River

This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Hulahula River and the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was ...

Info
Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered West Beaufort Sea coast of Alaska between the Colville River and Point Barrow

This dataset consists of short-term (~33 years) shoreline change rates for the north coast of Alaska between the Colville River and Point Barrow. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2012. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales

This dataset consists of long-term (less than 68 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline ...

Info
Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales

This dataset consists of long-term (less than 68 years) shoreline change rates for the sheltered north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used ...

Info
Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales

This dataset consists of short-term (less than 37 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using an end point rate-of-change (epr) method based on available shoreline data between 1980 and 2016. A reference baseline was ...

Info
Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales

This dataset consists of short-term (less than 37 years) shoreline change rates for the sheltered north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using an end point rate-of-change (epr) method based on available shoreline data between 1980 and 2016. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales

This dataset consists of short-term (less than 37 years) shoreline change rates for the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1980s and 2016. A reference baseline was used as the ...

Info
Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020

This dataset consists of rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each bluff line establishing measurement points, which are then used to ...

Info
Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020

This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with long-term linear regression rate calculations for the exposed central Beaufort Sea coast of Alaska from the Hulahula River to the Colville River

This dataset consists of long-term (70 years) shoreline change rates for the exposed, open-ocean coast of Alaska from the Hulahula River to the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2017. A reference baseline was ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with long-term linear regression rate calculations for the exposed eastern Beaufort Sea coast of Alaska from the U.S. Canadian Border to the Hulahula River

This dataset consists of long-term (70 years) shoreline change rates for the exposed, open-ocean coast of Alaska from the U.S. Canadian Border to the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2017. A reference ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with long-term linear regression rate calculations for the sheltered central Beaufort Sea coast of Alaska from the Hulahula River to the Colville River

This dataset consists of long-term (70 years) shoreline change rates for the mainland coast of Alaska sheltered by barrier islands from the Hulahula River to the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2017. A ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with long-term linear regression rate calculations for the sheltered eastern Beaufort Sea coast of Alaska from the U.S. Canadian Border to the Hulahula River

This dataset consists of long-term (70 years) shoreline change rates for the mainland coast of Alaska sheltered by barrier islands from the U.S. Canadian Border to the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2017. A ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with short-term linear regression rate calculations for the exposed central Beaufort Sea coast of Alaska from the Hulahula River to the Colville River

This dataset consists of short-term (less than 39 years) shoreline change rates for the exposed, open-ocean coast of Alaska from the Hulahula River to the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2017. A reference ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with short-term linear regression rate calculations for the exposed eastern Beaufort Sea coast of Alaska from the U.S. Canadian Border to the Hulahula River

This dataset consists of short-term (less than 39 years) shoreline change rates for the exposed, open-ocean coast of Alaska from the U.S. Canadian Border to the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2017. A ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with short-term linear regression rate calculations for the sheltered central Beaufort Sea coast of Alaska from the Hulahula River to the Colville River

This dataset consists of short-term (less than 39 years) shoreline change rates for the mainland coast of Alaska sheltered by barrier islands from the Hulahula River to the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and ...

Info
Digital Shoreline Analysis System (DSAS) version 5.1 transects with short-term linear regression rate calculations for the sheltered eastern Beaufort Sea coast of Alaska from the U.S. Canadian Border to the Hulahula River

This dataset consists of short-term (less than 39 years) shoreline change rates for the mainland coast of Alaska sheltered by barrier islands from the U.S. Canadian Border to the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.1, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Cape Cod region from Provincetown to the southern end of Monomoy Island, Massachusetts (CapeCod_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Delmarva North region from Cape Henlopen, Delaware to the southern end of Assateague Island, Virginia (DelmarvaN_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Delmarva South/Southern Virginia region from Wallops Island, Virginia to the Virginia/North Carolina border (DelmarvaS_SVA_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Greater Boston region from the southern side of Cape Ann, Massachusetts to Sandy Neck Beach in Sandwich, Massachusetts (GreaterBoston_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Long Island region from Montauk Point to the entrance of Raritan Bay, New York (LongIsland_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Massachusetts Islands Region including Martha's Vineyard and Nantucket (MA_Islands_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New England North region from Popham Beach, Maine to the northern side of Cape Ann, Massachusetts (NewEnglandN_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New England South region from Dartmouth, Massachusetts to Napatree Point, Rhode Island (NewEnglandS_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New Jersey North region from Sandy Hook to Little Egg Inlet, New Jersey (NewJerseyN_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New Jersey South region from Little Egg Inlet to Cape, May, New Jersey (NewJerseyS_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Rate Calculations for the Long Island region from Montauk Point to the entrance of Raritan Bay, New York (LongIsland_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Cape Cod region from Provincetown to the southern end of Monomoy Island, Massachusetts (CapeCod_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Delmarva North region from Cape Henlopen, Delaware to the southern end of Assateague Island, Virginia (DelmarvaN_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Delmarva South/Southern Virginia region from Wallops Island, Virginia to the Virginia/North Carolina border (DelmarvaS_SVA_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Greater Boston region from the southern side of Cape Ann, Massachusetts to Sandy Neck Beach in Sandwich, Massachusetts (GreaterBoston_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Massachusetts Islands Region including Martha's Vineyard and Nantucket (MA_Islands_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New England North region from Popham Beach, Maine to the northern side of Cape Ann, Massachusetts (NewEnglandN_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New England South region from Dartmouth, Massachusetts to Napatree Point, Rhode Island (NewEnglandS_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New Jersey North region from Sandy Hook to Little Egg Inlet, New Jersey (NewJerseyN_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New Jersey South region from Little Egg Inlet to Cape, May, New Jersey (NewJerseyS_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.2 Transects with Long-Term Linear Regression Rate Calculations for Oregon (OR_transects_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.2 Transects with Long-Term Linear Regression Rate Calculations for Washington (WA_transects_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.2 Transects with Short-Term End Point Rate Calculations for Oregon (OR_transects_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.2 Transects with Short-Term End Point Rate Calculations for Washington (WA_transects_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Texas east (TXeast)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Texas west (TXwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for western North Carolina (NCwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Texas east (TXeast)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Texas west (TXwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for western North Carolina (NCwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline ...

Info
Discrete Carbonate System Parameter Measurements in Middle Tampa Bay, Florida and the Eastern Gulf of Mexico, USA

This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida and eastern Gulf of Mexico. Discrete seawater samples were collected periodically (every few weeks to months) at repeat monitoring locations. Water samples were analyzed by the USGS Carbon Analytical Laboratory in St. ...

Info
Discrete Carbonate System Parameter Measurements in Tampa Bay, Florida, USA

This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida. Discrete seawater samples were collected along spatial transects at one to four hour intervals over 24-hour time periods. Water samples were analyzed at the USGS Carbon Analytical Laboratory in St. Petersburg Florida. ...

Info
Discrete surface water data for samples collected in-transit along the West Florida Shelf in July and August, 2013

The United States Geological Survey (USGS) is studying the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises on the West Florida Shelf and northern Gulf of Mexico regions aboard the research vessel (R/V) Weatherbird II or Bellows, ships of opportunity led by Dr. Kendra Daly, of the University of South Florida (USF) in July and August, ...

Info
Discrete water column sample data from predefined locations (stations) of the West Florida Shelf collected in July and August, 2013

The United States Geological Survey (USGS) is studying the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises on the West Florida Shelf and northern Gulf of Mexico regions aboard the research vessel (R/V) Weatherbird II or Bellows, ships of opportunity led by Dr. Kendra Daly, of the University of South Florida (USF) in July and August, ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2010–2011

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2012–2013

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2013–2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Edwin B. Forsythe NWR, NJ, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Edwin B. Forsythe NWR, NJ, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Edwin B. Forsythe NWR, NJ, 2013–2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2010–2011

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2014–2015

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2010–2011

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2013–2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Assateague Island, MD & VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Assawoman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Hatteras, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Coast Guard Beach, MA, 2013-2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cobb Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Fisherman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Metompkin Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Monomoy Island, MA, 2013-2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Myrtle Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parker River, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parramore Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Rhode Island National Wildlife Refuge, RI, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Ship Shoal Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Wreck Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Assateague Island, MD & VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Assawoman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Cape Hatteras, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Cape Lookout, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Cedar Island, VA, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Cedar Island, VA, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Cedar Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Coast Guard Beach, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Cobb Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Edwin B. Forsythe NWR, NJ, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Edwin B. Forsythe NWR, NJ, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Edwin B. Forsythe NWR, NJ, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Fire Island, NY, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Fire Island, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Fire Island, NY, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Fisherman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Metompkin Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Monomoy Island, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Myrtle Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Parker River, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Parramore Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Rhode Island National Wildlife Refuge, RI, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Rockaway Peninsula, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Rockaway Peninsula, NY, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Ship Shoal Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Smith Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
DisOcean: Distance to the ocean: Wreck Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database

The U.S. Geological Survey (USGS) Oceanographic Time-Series Measurements Database contains oceanographic observations made as part of studies designed to increase understanding of sediment transport processes and associated ocean dynamics. This report describes the instrumentation and platforms used to make the measurements; the methods used to process and apply quality-control criteria and archive the data; and the data storage format. The report also includes instructions on how to access the data from ...

Info
Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database

The U.S. Geological Survey (USGS) Oceanographic Time-Series Measurements Database contains oceanographic observations made as part of studies designed to increase understanding of sediment transport processes and associated ocean dynamics. This report describes the instrumentation and platforms used to make the measurements; the methods used to process and apply quality-control criteria and archive the data; and the data storage format. The report also includes instructions on how to access the data from ...

Info
DRASTIC model results for Upper Floridan aquifer vulnerability to Bromacil and Ethylene Dibromide

This dataset includes DRASTIC (Aller and others, 1987) model results for Upper Floridan aquifer vulnerability to contamination. The DRASTIC value serves as an intrinsic vulnerability index for assessing the transport of contaminants from the surface. The DRASTIC model setup requires the input of raster data for depth to groundwater, aquifer recharge, aquifer media, soil media, topography, vadose zone media, and aquifer hydraulic conductivity. These variables were entered into the DRASTIC equation using the ...

Info
Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022)

Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ...

Info
Eelgrass and substrate characteristics in Bellingham Bay, Washington, July 2019

Eelgrass (Zostera marina) characteristics, sediment grain size distributions, sediment total organic carbon contents (TOC), carbon isotope ratios of sediment organic matter, and total carbon to total nitrogen ratios were measured at four lower intertidal sites in Bellingham Bay, Washington, July 2-5, 2019.

Info
Elemental chemistry, radionuclides, and charcoal in watershed soil and reef sediment at Olowalu, Maui, 2022

Fine-sediment elemental chemistry, short-lived cosmogenic radionuclides (Beryllium-7, Cesium-137, and Lead-210), charcoal counts, and total organic carbon contents were quantified to describe urban and wildfire effects and land-based sediment sources and runoff to Olowalu Reef in February 2022.

Info
Elevation data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from July 2018 through January 2020

To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ...

Info
Elevation data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from October 2016 through October 2017

To understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites in the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). Each site consisted of four plots located along a transect perpendicular to the marsh-estuary shoreline at 5-meter (m) increments (5, 10, 15, and 20 m from the shoreline). Each plot contained four net sedimentation tiles (NST) that were secured ...

Info
Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia

Elevation distribution in the Assateague Island National Seashore (ASIS) salt marsh complex and Chincoteague Bay is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal ...

Info
Elevation of marsh units in Blackwater salt marsh complex, Chesapeake Bay, Maryland

This data release contains coastal wetland synthesis products for the geographic region of Blackwater salt marsh complex, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and ...

Info
Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts

Elevation distribution in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2019). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED), where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast ...

Info
Elevation of marsh units in Chesapeake Bay salt marshes

This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing ...

Info
Elevation of marsh units in Connecticut salt marshes

This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change ...

Info
Elevation of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024)

This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with ...

Info
Elevation of marsh units in Eastern Shore of Virginia salt marshes

This data release contains coastal wetland synthesis products for the Atlantic-facing Eastern Shore of Virginia (the data release for the Chesapeake Bay-facing portion of the Eastern Shore of Virginia is found here: https://doi.org/10.5066/P997EJYB). Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland ...

Info
Elevation of marsh units in Fire Island National Seashore and central Great South Bay salt marsh complex, New York

Elevation distribution in the Fire Island National Seashore and central Great South Bay salt marsh complex is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands ...

Info
Elevation of marsh units in Hudson Valley and New York City salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey ...

Info
Elevation of marsh units in Jamaica Bay to western Great South Bay salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy ...

Info
Elevation of marsh units in Maine salt marshes

This data release contains coastal wetland synthesis products for the state of Maine. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, and lifespan, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the ...

Info
Elevation of marsh units in Massachusetts salt marshes

This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal ...

Info
Elevation of marsh units in north shore Long Island salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been ...

Info
Elevation of marsh units in Plum Island Estuary and Parker River salt marsh complex, Massachusetts

This data release provides elevation distribution in the Plum Island Estuary and Parker River (PIEPR) salt marsh complex. Elevation distribution was calculated in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data was based on the 1-meter gridded Digital Elevation Model and supplemented by 1-meter resampled 1/9 arc-second resolution National Elevation Data, where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, ...

Info
Elevation of salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey

Elevation distribution in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2016). The elevation data is based on the 1-meter resampled 1/9 arc-second resolution USGS National Elevation Data. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey is expanding National Assessment of Coastal Change Hazards and ...

Info
Estuarine Back-barrier Shoreline and Beach Sandline Change Model Skill and Predicted Probabilities: Event-driven backshore shoreline change

The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ...

Info
Estuarine Back-barrier Shoreline and Beach Sandline Change Model Skill and Predicted Probabilities: Event-driven beach sandline change

The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ...

Info
Estuarine Back-barrier Shoreline and Beach Sandline Change Model Skill and Predicted Probabilities: Long-term sandline change

The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ...

Info
Estuarine Back-barrier Shoreline and Sandline Change Model Skill and Predicted Probabilities: Long-term back-barrier shoreline change

The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ...

Info
Estuarine Shoreline and Barrier-Island Sandline Change Assessment Dataset

The Barrier Island and Estuarine Wetland Physical Change Assessment Dataset was created to calibrate and test probability models of barrier island sandline and estuarine shoreline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to storm-derived overwash and estuarine shoreline change. Variables were calculated using a transect-based method in a geographic information system (GIS) by creating shoreline-perpendicular ...

Info
Excel Spreadsheet of the Descriptive Logs of Cores Collected in the Nauset Marsh area in August, 2006

In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ...

Info
Excel Spreadsheet of the Geoprobe Results from the Nauset Marsh Area Collected August, 2005

In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ...

Info
Excel Spreadsheet of the Pore Water Salinity Values of Cores Collected in the Nauset Marsh Area in August, 2006

In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ...

Info
Experimental coral-growth and physiological data and time-series imagery for Porites astreoides in the Florida Keys, U.S.A.

The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates and time-series photographs taken of colonies of the mustard hill coral, Porites astreoides, grown at four sites on the Florida Keys reef tract from Spring 2015 to Spring 2017. The data will be used to inform resource managers on the spatial and ...

Info
Experimental coral-growth data and time-series imagery for Acropora palmata and Pseudodiploria strigosa in St. Croix, U.S. Virgin Islands

The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps Department of Interior and other resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates and time-series photographs taken of colonies of the elkhorn coral, Acropora palmata, and the symmetrical brain coral, Pseudodiploria strigosa, grown at three sites at Buck Island Reef National Monument in St. ...

Info
Experimental coral-growth data and time-series imagery for Acropora palmata in the Florida Keys, U.S.A.

The USGS Coral Reef Ecosystems Studies project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates and time-series photographs taken of colonies of the elkhorn coral, Acropora palmata, grown at five sites on the Florida Keys reef tract from Spring 2018 to Autumn 2019. The data will be used to inform resource managers of the capacity for restoration and growth of this ...

Info
Experimental coral-growth rate, reef survey, and time-series imagery data collected between 1998 and 2017 to investigate construction and erosion of Orbicella coral reefs in the Florida Keys, U.S.A.

The USGS Coral Reef Ecosystems Studies project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates for Orbicella sp. coral colonies grown at five sites on the Florida Keys reef tract from 2013 to 2015, survey data for census-based carbonate budgeting at Hen and Chickens Reef (Islamorada, Florida) collected in 2017, and time-series photographs taken of permanent markers ...

Info
Experimental coral-physiology data for Acropora palmata in Florida, U.S.A.

The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps Department of Interior and other resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral physiology of the elkhorn coral, Acropora palmata, grown at five sites along the Florida outer reef tract including in Biscayne National Park, the Florida Keys National Marine Sanctuary, and Dry Tortugas National Park, ...

Info
Experimental data comparing two coral grow-out methods in nursery-raised Acropora cervicornis

Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef-restoration efforts to date. As part of the USGS Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/), scientists investigated skeletal characteristics of nursery-grown staghorn coral reared using two commonly used grow-out methods at Mote Tropical Research Laboratory’s offshore nursery. USGS staff compared linear extension, calcification rate, and skeletal density of nursery ...

Info
Experimental PCR Data on Soil DNA Extracts

Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States, in cooperation with the U.S. Environmental Protection Agency (EPA). Polymerase Chain Reaction (PCR) data for Bacillus species and B. anthracis rpoB gene PCR amplicon detection were reported as non-detect (n), low (l), medium (m), and high (h). Results for both pag and lef genes of the pX01 plasmid were reported by the University of South Florida's Center for Biological ...

Info
Exposure potential of marsh units to environmental health stressors in Connecticut salt marshes

This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change ...

Info
Exposure potential of marsh units to environmental health stressors in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024)

This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with ...

Info
Exposure potential of marsh units to environmental health stressors in Hudson Valley and New York City salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey ...

Info
Exposure potential of marsh units to environmental health stressors in north shore Long Island salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been ...

Info
Extratropical Storm Jan2016 Assessment of Potential Coastal Change Impacts: 1200 PM EST FRI JAN 22 2016

This dataset defines storm-induced coastal erosion hazards for the Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct impact of the Extratropical Storm in January 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities ...

Info
Extratropical Storm March 2018 Assessment of Potential Coastal Change Impacts: 0800 AM EST FRI MAR 02 2018

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island, Massachusetts, New Hampshire and Maine coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of an Extratropical Storm in March 2018. Storm-induced water levels, due to both surge and waves, were ...

Info
F4100300001D.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Gearhart

FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment. FIRMs also provide a basis for establishing flood insurance coverage premium rates offered through the National Flood Insurance Program (NFIP). These maps were published as paper documents, which have been scanned into image files (TIFF) as part of FEMA's FIRM modernization process. This is one of three scanned maps for the Seaside-Gearhart ...

Info
F4100320001.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 1

FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment. FIRMs also provide a basis for establishing flood insurance coverage premium rates offered through the National Flood Insurance Program (NFIP). These maps were published as paper documents, which have been scanned into image files (TIFF) as part of FEMA's FIRM modernization process. This is one of three scanned maps for the Seaside-Gearhart ...

Info
F4100320002C.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 2

FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment. FIRMs also provide a basis for establishing flood insurance coverage premium rates offered through the National Flood Insurance Program (NFIP). These maps were published as paper documents, which have been scanned into image files (TIFF) as part of FEMA's FIRM modernization process. This is one of three scanned maps for the Seaside-Gearhart ...

Info
Fall 2000 USGS Mid-Atlantic Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2000 Atlantic Coast U.S. ...

Info
Faults--Drakes Bay and Vicinity, California

This part of DS 781 presents data of faults for the geologic and geomorphologic map of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Faults_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Faults--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Faults_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K ...

Info
Faults--Monterey Canyon and Vicinity Map Area, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Faults_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G. ...

Info
Faults--Offshore of Aptos Map Area, California

This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Faults_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, ...

Info
Faults--Offshore of Bodega Head Map Area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Faults_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ...

Info
Faults--Offshore of Bolinas Map Area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Faults_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., ...

Info
Faults--Offshore of Carpinteria, California

This part of DS 781 presents data for fault data for the Offshore of Carpinteria map area, California. The vector data file is included in "Faults_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.D., ...

Info
Faults--Offshore of Coal Oil Point, California

This part of DS 781 presents fault data for the Offshore of Coal Oil Point map area, California. The vector data file is included in "Faults_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, L.M., Greene, H.G., ...

Info
Faults--Offshore of Fort Ross Map Area, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Faults_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Faults--Offshore of Gaviota Map Area, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Faults_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota ...

Info
Faults--Offshore of Half Moon Bay Map Area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Faults_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L. ...

Info
Faults--Offshore of Monterey, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Faults_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, ...

Info
Faults--Offshore of Pacifica map area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Faults_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, ...

Info
Faults--Offshore of Point Conception Map Area, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Point Conception Map Area, California. The vector data file is included in "Faults_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ...

Info
Faults--Offshore of Point Reyes Map Area, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Faults_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C ...

Info
Faults--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Faults_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter ...

Info
Faults--Offshore of San Francisco Map Area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore San Francisco map area, California. The vector data file is included in "Faults_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W ...

Info
Faults--Offshore of San Gregorio Map Area, California

This part of SIM 3306 presents data for the faults for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Faults_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., ...

Info
Faults--Offshore of Santa Barbara, California

This part of DS 781 presents fault data for the Offshore of Santa Barbara map area, California. The vector data file is included in "Faults_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., ...

Info
Faults--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Faults_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., ...

Info
Faults--Offshore of Tomales Point Map Area, California

This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Faults_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M ...

Info
Faults--Offshore of Ventura, California

This part of SA 781 presents fault data for the Offshore of Ventura map area, California. The vector data file is included in "Faults_OffshoreVentura.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey, M ...

Info
Faults--Offshore Pigeon Point, California

This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Faults_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., ...

Info
Faults--Offshore Refugio Beach, California

This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Faults_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H ...

Info
Faults--Offshore Santa Cruz, California

This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Santa Cruz map area, California. The vector data file is included in "Faults_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., ...

Info
Faults—Point Sur to Point Arguello, California

This part of DS 781 presents data for the faults of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Faults_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Faults in the Point Sur to Point Arguello region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, ...

Info
Faults--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, ...

Info
Faults--Punta Gorda to Point Arena, California

This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, ...

Info
FIIS_Breach_Shorelines.shp - Fire Island National Seashore Wilderness Breach Shoreline Data Collected from Fire Island, New York, October 2014 to October 2017

Hurricane Sandy made U.S. landfall, coincident with astronomically high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ...

Info
FIIS_Breach_Shorelines.shp - Fire Island National Seashore Wilderness Breach Shoreline Data Collected from Fire Island, New York, October 2014 to September 2016

Hurricane Sandy made U.S. landfall, coincident with astronomical high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ...

Info
FIIS_Shorelines_Oct2012_Oct2017.shp: Fire Island, NY pre- and post-storm shoreline data from October 2012 to October 2017

Hurricane Sandy made U.S. landfall, coincident with astronomically high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ...

Info
Flooding extent polygons for modelled wave-driven water levels in Florida with and without projected coral reef degradation

This data release presents projected flooding extent polygon (flood masks) shapefiles based on wave-driven total water levels for the State Florida (the Florida Peninsula and the Florida Keys). There are 12 associated flood mask shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years), the current scenario (base) and each of the degradation scenarios (Mean Elevation and Mean Erosion).

Info
Florida Keys Corals: A Photographic Record of Changes from 1959 to 2015

This data release contains time-series photographs taken of corals and coral habitats in the Florida Keys between 1959 and 2015 at Carysfort Reef and Grecian Rocks (a total of six sites). The original intent was to show coral reef recovery after Hurricane Donna devastated the area in 1960. Corals, especially elkhorn and staghorn coral, grew prolifically after the storm until the late 1970s, then began to decline, with the maximum period of decline centered around 1983 and 1984. These time-series photographs ...

Info
Folds--Drakes Bay and Vicinity Map Area, California

This part of DS 781 presents data of folds for the geologic and geomorphologic map of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Folds_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Folds--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Folds_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B. ...

Info
Folds--Monterey Canyon and Vicinity Map Area, California

This part of DS 781 presents fold data for the geologic and geomorphic map of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Folds_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., ...

Info
Folds--Offshore of Aptos Map Area, California

This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Folds_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R ...

Info
Folds--Offshore of Bodega Head Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Folds_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ...

Info
Folds--Offshore of Bolinas Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Folds_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, ...

Info
Folds--Offshore of Carpinteria, California

This part of DS 781 presents fold data for the Offshore of Carpinteria map area, California. The vector data file is included in "Folds_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.D., Wong, F.L., ...

Info
Folds--Offshore of Coal Oil Point, California

This part of DS 781 presents fold data for the Offshore of Coal Oil Point map area, California. The vector data file is included in "Folds_OffshoreCoalOilPoint.zip," which is accessible from https ://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, L.M., Greene, H.G., ...

Info
Folds--Offshore of Fort Ross Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Folds_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E ...

Info
Folds--Offshore of Gaviota Map Area, California

This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Folds_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. In the offshore part of the map area, closely-spaced seismic-reflection profiles image many shallow, west-northwest striking folds that have variable geometry, length, amplitude, continuity, and wavelength. The two longest folds, the 17-km-long Molino anticline ...

Info
Folds--Offshore of Half Moon Bay Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Folds_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., ...

Info
Folds--Offshore of Monterey, California

This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Folds_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, ...

Info
Folds--Offshore of Pacifica map area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Folds_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R ...

Info
Folds--Offshore of Point Conception Map Area, California

This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Point Conception Map Area, California. The vector data file is included in "Folds_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ...

Info
Folds--Offshore of Point Reyes Map Area, California

This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Folds_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A ...

Info
Folds--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Folds_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ...

Info
Folds--Offshore of San Francisco Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The vector data file is included in "Folds_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R ...

Info
Folds--Offshore of San Gregorio Map Area, California

This part of SIM 3306 presents data for the folds for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Folds_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, ...

Info
Folds--Offshore of Santa Barbara, California

This part of DS 781 presents fold data for the Offshore of Santa Barbara map area, California. The vector data file is included in "Folds_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., ...

Info
Folds--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Folds_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie ...

Info
Folds--Offshore of Tomales Point Map Area, California

This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Folds_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W. ...

Info
Folds--Offshore of Ventura, California

This part of DS 781 presents fold data for the Offshore of Ventura map area, California. The vector data file is included in "Folds_OffshoreVentura.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey, M.D ...

Info
Folds--Offshore Pigeon Point, California

This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Folds_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, ...

Info
Folds--Offshore Refugio Beach, California

This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Folds_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G ...

Info
Folds--Offshore Santa Cruz, California

This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Santa Cruz map area, California. The vector data file is included in "Folds_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, ...

Info
Folds—Point Sur to Point Arguello, California

This part of DS 781 presents data for the folds of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Folds_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Folds in the Point Sur to Point Arguello region are identified on seismic-reflection data based on warping and tilting of reflections. Folds were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2008 ...

Info
Foraminiferal Mg/Ca data from IODP sediment core U1446

In 2019, the magnesium-to-calcium (Mg/Ca) ratios were measured in the tests of planktic foraminiferal species, Globigerinoides ruber (white variety), in a subset of samples from Integrated Ocean Drilling Program (IODP) sediment core U1146 from the Bay of Bengal drilled November 2014 to January 2015. For further information regarding data collection and/or processing methods, refer to the associated journal article (Clemens and others, 2021).

Info
Geochemical and isotopic compositions of stream sediment, parent rock, and nearshore sediment from southwest Puerto Rico, April 2017-June 2018

Geochemical and isotopic compositions were determined in stream sediment and parent rocks collected in April 2017 and June 2017 and in nearshore sediment collected bimonthly in sediment traps from May 2017 to June 2018 in the coastal zone and 12 drainages of southwest Puerto Rico: Rio Loco, Yauco, Guayanilla, Macana, Tallaboa, Matilde, Portugues, Bucana, Inabon, Jacaquas, Descalabrado, and Coamo. Geochemical compositional data include: a) total contents of major, minor, trace, and rare earth elements in the ...

Info
Geochemical and mineralogic analysis of authigenic carbonates collected offshore the U.S. Mid- and South Atlantic

Geochemical and mineralogic analysis of selected carbonate rock samples collected from seep fields on the RB1903 and AT41 research expeditions in the U.S. Mid- and South Atlantic.Samples were collected as a fingerprint to past hydrocarbon seep activity, fluid source, and depositional environment. Analyses include: Wavelength-dispersive X-ray Fluorescence (WDXRF) major element, Inductively Coupled Optical Emission Spectroscopy/Mass Spectroscopy (ICPOES-MS) major and minor element, and x-ray diffractrometry ...

Info
Geochemical data supporting investigation of solute and particle cycling and fluxes from two tidal wetlands on the south shore of Cape Cod, Massachusetts, 2012-19 (ver. 2.0, October 2022)

Assessment of geochemical cycling within tidal wetlands and measurement of fluxes of dissolved and particulate constituents between wetlands and coastal water bodies are critical to evaluating ecosystem function, service, and status. The U.S. Geological Survey and collaborators collected surface water and porewater geochemical data from a tidal wetland located on the eastern shore of Sage Lot Pond in Mashpee, Massachusetts, within the Waquoit Bay National Estuarine Research Reserve, between 2012 and 2019. ...

Info
Geochemical data to characterize chemical water column properties of flooded caves (Ox Bel Ha and Cenote Crustacea) within the coastal aquifer of the Yucatan Peninsula, Quintana Roo, from December 2013 to January 2015

Natural cave passages penetrating coastal aquifers in the Yucatan Peninsula (Quintana Roo, Mexico) were accessed to investigate how regional meteorology and hydrology control dissolved organic carbon and methane dynamics in karst subterranean estuaries, the region of aquifers where fresh and saline waters mix. Three field trips were carried out in December 2013, August 2014, and January 2015 to obtain 1) physicochemical and 2) geochemical data from the water column and 3) temporal records of water chemistry ...

Info
Geochemical data to characterize physical and chemical properties of the Cenote Bang, a component of the Ox Bel Ha cave network within the subterranean estuary coastal aquifer of the Yucatan Peninsula, from December 2013 to January 2016

Subterranean estuaries extend inland into density-stratified coastal carbonate aquifers that contain a surprising diversity of endemic animals (mostly crustaceans) within a highly oligotrophic environment. How complex ecosystems thrive in this globally-distributed, cryptic habitat (termed anchialine) is poorly understood. The northeastern margin of the Yucatan Peninsula contains over 250 km of mapped, diver-accessible caves passages where previous studies have suggested chemoautotrophic processes are the ...

Info
Geochemistry of authigenic carbonates from Cascadia Margin

Geochemical analysis of authigenic carbonates from the Cascadia Subduction Zone. Powdered carbonate samples for stable carbon (delta-C-13) and oxygen (delta-O-18) isotopes and carbonate phase were analyzed as a proxy for potential fluid sources, and to better understand how process, such as mixing, and oxidation, can alter the initial fluid isotopic composition and the archived fluid-source signature in the authigenic carbonates.

Info
Geochemistry of fine-grained sediment in Bellingham Bay, Nooksack River, and small creeks from June 2017 to September 2019

Elemental compositions are reported for the fine fraction of surface sediments from Bellingham Bay (June 2017 and March 2019) and in the fine fraction of streambank sediment from the Nooksack River (September 2017, March 2019, September 2019), Squalicum Creek (March and September 2019), Whatcom Creek (March and September 2019), and Padden Creek (March and September 2019). Major oxide percentages are reported in Nooksack River fine sediment collected in September 2017. Ancillary data for sediment collected ...

Info
Geochemistry of fine sediment from San Francisco Bay shoals (2012) and tributaries (2010, 2012, 2013)

Elemental chemistry and weight percent of the less than 0.063 mm fine sediment fraction are reported for surface sediments from shoals, the ebb tide delta, local tributaries, and inland rivers that carry sediment to San Francisco Bay, California.

Info
Geochemistry of sediment and organic matter in drainages burned by the Altas and Nuns wildfires in October 2017 and of nearshore seabed sediment in north San Francisco Bay from March to April 2018

Fine-grained sediment was collected from the banks of Napa River, Sonoma Creek, and tributaries in March 2018 and from shallow nearshore areas of the northern reach of San Francisco Bay in April 2018. Bulk sediment was dated using activities of short-lived cosmogenic radionuclides (beryllium-7, cesium-137, and lead-210). Contents of potentially toxic metals and source-rock-indicative elements, including rare earth elements, were quantified in the fine fraction of sediment (particles less than 0.063 mm ...

Info
Geochemistry of surface sediment and sediment cores in Bellingham Bay, Whatcom County, Washington, in February 2020

Geochemical data are reported for surface sediments and long sediment cores from Bellingham Bay, Whatcom County, Washington, collected in early February 2020 after flood conditions on the Nooksack River. Data include total organic carbon content (TOC), carbonate content (CaCO3), ratios of stable carbon 13/12 isotopes (d13C), ratios of total carbon to total nitrogen (C:N), short-lived cosmogenic radionuclide activities (Beryllium-7, Cesium-137, and excess Lead-210), and elemental chemistry.

Info
Geochemistry time series and growth parameters from Tutuila, American Samoa coral record

Geochemical analysis (including age-corrected radiocarbon stable isotopes, and elemental composition) and growth parameters (including calcification rate, density, and extension information) were measured from a coral core collected from a reef off the southern side of Tutuila, American Samoa. The core was collected near Matautuloa Point on 8 April 2012 in collaboration with the Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), ...

Info
Geology and geomorphology--Drakes Bay and Vicinity Bay, California

This part of DS 781 presents data for the geologic and geomorphic map of the Drakes Bay and Vicinity, California. The polygon shapefile is included in "Geology_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ...

Info
Geology and geomorphology--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Geology_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ...

Info
Geology and geomorphology--Monterey Canyon and Vicinity Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in "Geology_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., ...

Info
Geology and geomorphology--Offshore of Aptos Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Geology_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ...

Info
Geology and geomorphology--Offshore of Bodega Head Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Geology_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E. ...

Info
Geology and geomorphology--Offshore of Bolinas Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Geology_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ...

Info
Geology and geomorphology--Offshore of Carpinteria, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Carpinteria map area, California. The vector data file is included in "Geology_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, ...

Info
Geology and geomorphology--Offshore of Fort Ross Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Geology_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ...

Info
Geology and geomorphology--Offshore of Gaviota Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Geology_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series-Offshore of Gaviota, ...

Info
Geology and geomorphology--Offshore of Half Moon Bay map area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Geology_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ...

Info
Geology and geomorphology--Offshore of Monterey, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Geology_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds. ...

Info
Geology and geomorphology--Offshore of Pacifica map area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Geology_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross ...

Info
Geology and geomorphology--Offshore of Point Conception Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Point Conception map area, California. The vector data file is included in "Geology_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series-Offshore ...

Info
Geology and geomorphology--Offshore of Point Reyes Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Geology_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ...

Info
Geology and geomorphology--Offshore of Salt Point Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Geology_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ...

Info
Geology and geomorphology--Offshore of San Francisco Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The polygon shapefile is included in "Geology_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., ...

Info
Geology and geomorphology--Offshore of San Gregorio Map Area, California

This part of SIM 3306 presents data for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Geology_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey ...

Info
Geology and geomorphology--Offshore of Santa Barbara, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Santa Barbara map area, California. The vector data file is included in "Geology_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., ...

Info
Geology and geomorphology--Offshore of Scott Creek map area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Geology_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ...

Info
Geology and geomorphology--Offshore of Tomales Point Map Area, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Geology_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., Endris ...

Info
Geology and geomorphology--Offshore of Ventura, California

This part of DS 781 presents geologic data of the Offshore of Ventura map area, California. The vector data file is included in "Geology_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., ...

Info
Geology and geomorphology--Offshore Pigeon Point, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Geology_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. Marine geology and geomorphology were mapped in the Offshore Pigeon Point map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California'€™s State Waters. Offshore geologic units were delineated on the basis of ...

Info
Geology and geomorphology--Offshore Refugio Beach, California

This part of DS 781 presents the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Geology_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., Seitz, G ...

Info
Geology and geomorphology--Offshore Santa Cruz, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Santa Cruz map area, California. The vector data file is included in "Geology_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K ...

Info
Geology--Offshore of Coal Oil Point, California

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Geology_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., ...

Info
Geomorphic habitat units derived from 2009 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 11 September 2009 1 meter resolution NAIP aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (17 September 2009) for areas < MHHW and aerial lidar surveys (4-6 April 2009) for elevations > MHHW.

Info
Geomorphic habitat units derived from 2011 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 03 September 2011* 0.3 meter resolution Microsoft/Digital Globe aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (25 August 2011) for areas < MHHW and aerial lidar surveys (13-15 April 2012) for elevations > MHHW. *Image date of 3-Sep-11 corrected in metadata. During product generation the imagery date was believed to be 8-25-2011, as reported by ...

Info
Geomorphic habitat units derived from 2012 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 30 August 2012 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (28 August 2012) for areas < MHHW and aerial lidar surveys (17 October 2012) for elevations > MHHW.

Info
Geomorphic habitat units derived from 2013 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 26 August 2013 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (16 September 2013) for areas < MHHW and aerial lidar surveys (17 October 2012) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (19 September 2013) for elevations > MHHW.

Info
Geomorphic habitat units derived from 2014 aerial imagery and elevation data for the Elwha River estuary, Washington

Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 28 August 2014 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (5-8 September 2014) for areas < MHHW and aerial lidar surveys (7 November 2014) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (30 September 2014) for elevations > MHHW.

Info
Geophysical properties, geochronologic, and geochemical data of sediment cores collected from San Pablo Bay, California, October 17-20, 2016

Geophysical properties (P-wave velocity, gamma ray density, and magnetic susceptibility), geochronologic (radiocarbon, excess Lead-210, and Cesium-137), and geochemical data (organic carbon content and 60 element contents) are reported for select vibracores collected aboard the S/V Retriever October 17-20, 2016, in San Pablo Bay, California. Geophysical properties were measured with a Geotek Multi-Sensor Core Logger (MSCL). Radiocarbon was measured by accelerator mass spectrometry (AMS). Excess Lead-210 and ...

Info
Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Grab Sample Data (GRABS)

Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ...

Info
Georeferenced National Ocean Service (NOS) Hydrographic Sheets for Grand Bay, Mississippi, and Surrounding Areas

Hydrographic sheets (H-sheets) and nautical charts produced by the National Ocean Service (NOS) during the 1800s provide historic sounding (water depth) measurements of coastal areas. The data can be vectorized into a geographic information system (GIS), adjusted to a modern vertical datum, and converted into a digital elevation model to provide an interpretation of the historic seafloor elevation. These data were produced to provide an estimate of historical bathymetry for the Mississippi-Alabama coastal ...

Info
Georeferenced scans of National Oceanic and Atmospheric Administration (NOAA) topographic sheets (T-Sheets) Collected Along the Fire Island and Great South Bay, New York, Coastline from 1834-1875

Topographic sheets (t-sheets) produced by the National Ocean Service (NOS) during the 1800s provide the position of past shorelines. The shoreline data can be vectorized into a geographic information system (GIS) and compared to modern shoreline data to calculate estimates of long-term shoreline rates of change. Many t-sheets were scanned and digitized by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline web site (https://shoreline.noaa.gov/data/datasheets/t ...

Info
Georeferenced Scans of National Oceanic and Atmospheric Administration (NOAA) T-Sheets Collected Along the New Jersey Coastline from 1839-1875

Historical shoreline surveys were conducted by the National Ocean Service (NOS), dating back to the early 1800s. The maps resulting from these surveys, often called t-sheets, provide a reference of historical shoreline position that can be compared to modern data to identify shoreline change. The t-sheets are stored at the National Archives and many have been scanned by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline Web site (http://www.shoreline.noaa.gov ...

Info
Global compilation of published gas hydrate-related bottom simulating reflections

Bottom simulating reflections (BSRs) are seismic features that are imaged in marine sediments using high-energy, impulsive seismic sources such as air guns or generator-injector guns. BSRs often cut across sediment stratigraphy and are interpreted as marking the deepest depth at which gas hydrate can exist. Gas hydrate is a naturally occurring and widely distributed frozen form of water and gas (usually methane) stable at low temperatures (up to about 25 degrees Celsius [°C]) and intermediate pressures ...

Info
Globorotalia truncatulinoides Sediment Trap Data in the Gulf of Mexico

Modern observations of planktic foraminifera from sediment trap studies help to constrain the regional ecology of paleoceanographically valuable species. Results from a weekly-resolved sediment trap time series (2008–2014) in the northern Gulf of Mexico demonstrate that 92% of Globorotalia truncatulinoides flux occurs in winter (January, February, and March), and that encrusted and non-encrusted individuals represent calcification in distinct depth habitats. Individual foraminiferal analysis (IFA) of G. ...

Info
Globorotalia truncatulinoides Trace Element Geochemistry (Barium, Magnesium, Strontium, Manganese, and Calcium) from the Gulf of Mexico Sediment Trap