1995 National Assessment of Oil and Gas Resources of the United States: Bathymetry (ATMX_BAT.SHP)
This GIS overlay is a component of the U.S Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata related to hydrate studies in this region. |
Info |
COW_Q09.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (9 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q08.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (8 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q07.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (7 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q06.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (6 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q05.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (5 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q04.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (4 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q03.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (3 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q02.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (2 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q01.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (1 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_250M_TM_NAD27.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar composite mosaic (TM, 250 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched the GLORIA (Geological LOng ... |
Info |
BS_Q26.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q25.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q24.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q23.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q22.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q22B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q21.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q20.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q19.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q18.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q17.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q16.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q15.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q14.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q14B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q13.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q13B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q12.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q11.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q10.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q09.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q08.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q07.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q06.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q06B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q05.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q04.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q03.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q02.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q01.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_250M_LCC_NAD27.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, Clarke1866)
From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period focused on the Bering Sea region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. The ... |
Info |
ALEU_250M_LCC_WGS84.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Aleutian Arc Exclusive Economic Zone (EEZ) region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. Thirty-one digital mosaics of a 3 degree by ... |
Info |
AA_Q30.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q29.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q28.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q27.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q26.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q25.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q24.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q23.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q22.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q22B.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (31 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q21.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q20.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q19.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q18.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q17.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q16.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q15.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q14.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q13.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q12.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q11.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q10.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q09.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q08.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q07.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q06.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q05.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q04.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q03.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q02.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q01.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 31 digital mosaics of a 3 ... |
Info |
Enhanced Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_1MSSS_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_USGS_backscatter1m, UTM Zone 19N, GeoTIFF)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Sidescan-sonar mosaic collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007. (GeoTIFF IMAGE, SONAR_05M.TIF)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Enhanced 1-meter Composite Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of the Sea Floor in Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM19_1MRSSS.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (MOSAIC_06015, UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
0.5-m Stretched Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of the Sea Floor in the Vicinity of Woods Hole, Massachusetts (H11077_SSS100_GEO.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
1 meter Klein 3000 sidescan-sonar backscatter GeoTIFF mosaic of the nearshore portion of the Cape Ann to Salisbury Beach Massachusetts survey area (KLEIN_BS1M.tif, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
Stretched Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_1M_SSS_GEO_STR.TIF, Geographic)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
Composite Sidescan Sonar Mosaic of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in Rhode Island Sound (H11320_1M_SSS_UTM19.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including : (1 ... |
Info |
1m Sidescan-Sonar Mosaic of Apalachicola Bay, Florida (APBAYMOS1M.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Composite Grayscale Image of the Sidescan Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of the Sea Floor in Quicks Hole, MA (H11076_GEO_1MSSS.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Enhanced Composite Sidescan Sonar Mosaic of NOAA Survey H11310 in Central Narragansett Bay, Rhode Island (H11310SS_GEO1M_INV.TIF, Geographic)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic presented herein covers an area of the sea ... |
Info |
Composite Sidescan-Sonar Mosaic collected by the U.S. Geological Survey offshore of the Grand Strand, SC (1999 to 2003) (MOSAIC, GeoTIFF)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Composite Sidescan-Sonar Mosaic, Pulley Ridge: UTM, Zone 17 Projection (COMPOSITE_UTM.TIF)
Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, ... |
Info |
Digital Sidescan-Sonar Mosaic collected within the Gulf of the Farallones, National Marine Sanctuary (FARALLONES.TIF, UTM 10, WGS84)
In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ... |
Info |
Continuous Resistivity Profiling, Electrical Resistivity Tomography and Hydrologic Data Collected in 2017 from Indian River Lagoon, Florida
Extending 200 kilometers (km) along the Atlantic Coast of Central Florida, Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States. The lagoon is characterized by shallow, brackish waters and a width that varies between 0.5 and 9.0 km; there is significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center used continuous resistivity profiling (CRP, a towed ... |
Info |
Subbottom and Sidescan Sonar Data Acquired in 2015 From Grand Bay, Mississippi and Alabama
From May 28 to June 3, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic evolution and estuarine sediment thickness in Grand Bay, Alabama and Mississippi. Specific objectives were to document the age and accumulation patterns of estuarine sediment to advance our understanding of sediment exchange with the adjacent marsh and sources of sediment to the coastal ocean. This investigation is part of the USGS Sea-level and Storm Impacts on Estuarine Environments ... |
Info |
10CCT03_ss_1m.tif: the 1-m resolution grid of the side scan sonar data from USGS Cruise 10cct03
In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of West Ship Island, MSiss., extending to the middle of Dauphin Island, Ala. This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 kilometers, km) with those of offshore surveys (~2 km to ~9 km) in the ares and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of ... |
Info |
10cct02_ss_v1_1m - Side scan sonar mosaic of Petit Bois Pass, Alabama, Mississippi Barrier Islands, March 2010
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama. These efforts were part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2021 Near Pensacola Beach, Florida
From June 2 through 9, 2021, researchers from the U.S. Geological Survey (USGS) conducted an inshore and offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Pensacola Beach, Florida (FL). The Coastal Resource Evaluation for Management Applications (CREMA) project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2019 from Rockaway Peninsula, New York
From September 27 through October 5, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near the Rockaway Peninsula, New York. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2019 from Cedar Island, Virginia
From August 9 to 14, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near Cedar Island, Virginia. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an archive of high-resolution ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2018 from the Northern Chandeleur Islands, Louisiana
From August 16 to 21, 2018, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in June 2018 From Fire Island, New York
Researchers from the U.S. Geological Survey (USGS) conducted a long-term, coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal System Change project (https://coastal.er.usgs.gov/fire-island/) objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. From ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2017 from the Louisiana Chenier Plain
June 2–10 and July 2, 2017, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of the Louisiana Chenier Plain to document the changing morphology of the coastal environment. Data were collected under the Barrier Island Coastal Monitoring (BICM) program, an ongoing collaboration between the State of Louisiana Coastal Protection and Restoration Authority (CPRA), the University of New Orleans (UNO) Pontchartrain Institute for Environmental Sciences (PIES), and the USGS. Project ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2017 From the Northern Chandeleur Islands, Louisiana
From August 7 to 16, 2017, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2016 from the Northern Chandeleur Islands, Louisiana
From June 10 to 19, 2016, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months to ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2015 from the Northern Chandeleur Islands, Louisiana
From September 14 to 28, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales ... |
Info |
Transgressive Contours—Point Sur to Point Arguello, California
This part of DS 781 presents data for the transgressive contours of the Point Sur to Point Arguello, California, region. The vector data file is included in the “TransgressiveContours_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data ... |
Info |
Sediment Thickness—Point Sur to Point Arguello, California
This part of DS 781 presents data for the sediment-thickness map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “SedimentThickness_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ... |
Info |
Isopachs—Point Sur to Point Arguello, California
This part of DS 781 presents data for the isopachs of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Isopachs_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, ... |
Info |
Folds—Point Sur to Point Arguello, California
This part of DS 781 presents data for the folds of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Folds_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Folds in the Point Sur to Point Arguello region are identified on seismic-reflection data based on warping and tilting of reflections. Folds were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2008 ... |
Info |
Faults—Point Sur to Point Arguello, California
This part of DS 781 presents data for the faults of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Faults_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Faults in the Point Sur to Point Arguello region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, ... |
Info |
Depth to Transition—Point Sur to Point Arguello, California
This part of DS 781 presents data for the depth-to-transition map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “DepthToTransition_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ... |
Info |
Seafloor character, 5 m resolution--Monterey Canyon and Vicinity, California
This part of DS 781 presents the seafloor-character map of Monterey Canyon and Vicinity, California. The raster data file is included in "SeafloorCharacter_5m_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and ... |
Info |
Seafloor character, 2 m resolution--Monterey Canyon and Vicinity, California
This part of DS 781 presents the seafloor-character map of Monterey Canyon and Vicinity, California. The raster data file is included in "SeafloorCharacter_2m_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and ... |
Info |
Paleoshorelines--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents data for the paleoshorelines for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in "Paleoshorelines_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ofr20161072. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H ... |
Info |
Habitat--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the habitat map of the seafloor of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Habitat_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., ... |
Info |
Geology and geomorphology--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in "Geology_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., ... |
Info |
Folds--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Folds_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., ... |
Info |
Faults--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Faults_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G. ... |
Info |
BathymetryB Hillshade [5m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryB [5m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryA Hillshade [2m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryA [2m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterD_CSUMB_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4 ... |
Info |
BackscatterC [7125]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterC_7125_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These ... |
Info |
BackscatterB [EM300]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by Monterey Bay Aquarium Research Institute (MBARI) and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterB_EM300_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. ... |
Info |
BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterA_USGS_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map ... |
Info |
Geology and geomorphology--Offshore Santa Cruz, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Santa Cruz map area, California. The vector data file is included in "Geology_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K ... |
Info |
Faults--Offshore Santa Cruz, California
This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Santa Cruz map area, California. The vector data file is included in "Faults_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., ... |
Info |
Backscatter [SWATH]--Offshore Santa Cruz, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Santa Cruz map area, California. Backscatter data are provided as a raster file included in "Backscatter_Swath_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, ... |
Info |
Transgressive Contours--Pigeon Point to Monterey, California
This part of DS 781 presents data for the transgressive contours for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The vector file is included in T "TransgressiveContours_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was ... |
Info |
Sediment Thickness--Pigeon Point to Monterey, California
This part of DS 781 presents data for the sediment-thickness map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "SedimentThickness_PigeonPointToMontereyBay.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from ... |
Info |
Isopachs--Pigeon Point to Monterey, California
This part of DS 781 presents data for the sediment-thickness isopachs for the Pigeon Point to Monterey Bay, California, map region. The vector data file is included in "Isopachs_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ... |
Info |
Depth to Transition--Pigeon Point to Monterey, California
This part of DS 781 presents data for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "DepthToTransition_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ... |
Info |
Geology and geomorphology--Offshore of Aptos Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Geology_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ... |
Info |
Folds--Offshore of Aptos Map Area, California
This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Folds_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R ... |
Info |
Faults--Offshore of Aptos Map Area, California
This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Faults_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, ... |
Info |
BackscatterB [EM300]--Offshore Aptos, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterB_EM300_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ... |
Info |
BackscatterA [SWATH]--Offshore Aptos, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterA_SWATH_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ... |
Info |
Habitat--Offshore Scott Creek, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in "Habitat_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ... |
Info |
Geology and geomorphology--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Geology_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ... |
Info |
Contours--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Scott Creek map area, California. The vector data file is included in "Contours_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., ... |
Info |
Bathymetry--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the bathymetry map of Offshore Scott Creek, California. The raster data file is included in "Bathymetry_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., Finlayson, D.P., ... |
Info |
Bathymetry Hillshade--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Scott Creek, California. The raster data file is included in "BathymetryHS_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., ... |
Info |
BackscatterC [SWATH]--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterC_SWATH_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ... |
Info |
BackscatterB [7125]--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterB_7125_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ... |
Info |
BackscatterA [8101]--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterA_8101_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ... |
Info |
Transgressive Contours--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the transgressive contours for the Point Conception to Hueneme Canyon, California, region. The vector file is included in "TransgressiveContours_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Sediment Thickness--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the sediment-thickness map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "SedimentThickness_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Isopachs--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the isopachs for the Point Conception to Hueneme Canyon, California, region. The vector data file is included in "Isopachs_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection data collected in 2014 ... |
Info |
Depth to Transition--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the depth-to-transition map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "DepthToTransition_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Habitat--Offshore Pigeon Point, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Pigeon Point map area, California. The vector data file is included in "Habitat_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., ... |
Info |
BackscatterC [SWATH]--Offshore Pigeon Point, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterC_SWATH_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson ... |
Info |
BackscatterB [7125]--Offshore Pigeon Point, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterB_7125_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, ... |
Info |
BackscatterA [8101]--Offshore Pigeon Point, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterA_8101_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, ... |
Info |
Habitat--Offshore of Monterey, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Monterey map area, California. The vector data file is included in "Habitat_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds. ... |
Info |
Backscatter [Swath]-- Offshore of Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_Swath_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter [8101]--Offshore of Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_8101_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter [7125]-- Offshore of Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_7125_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter [5m]--Offshore Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Submarine-landslide scarps--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the submarine-landslide scarps for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "SubmarineLandslideScarps_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G. ... |
Info |
Paleoshorelines--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the paleoshorelines for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Paleoshorelines_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., ... |
Info |
Habitat--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the habitat map of the seafloor of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Habitat_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ... |
Info |
Geology and geomorphology--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Geology_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ... |
Info |
Folds--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Folds_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B. ... |
Info |
Faults--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Faults_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K ... |
Info |
Backscatter B [USGS]--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_USGS_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N ... |
Info |
Backscatter A [CSUMB]--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_CSUMB_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, ... |
Info |
Habitat--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the habitat map of the seafloor of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Habitat_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ... |
Info |
Geology and geomorphology--Drakes Bay and Vicinity Bay, California
This part of DS 781 presents data for the geologic and geomorphic map of the Drakes Bay and Vicinity, California. The polygon shapefile is included in "Geology_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ... |
Info |
Folds--Drakes Bay and Vicinity Map Area, California
This part of DS 781 presents data of folds for the geologic and geomorphologic map of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Folds_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Faults--Drakes Bay and Vicinity, California
This part of DS 781 presents data of faults for the geologic and geomorphologic map of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Faults_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Backscatter C [7125]--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_7125_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. The acoustic-backscatter map of Drakes Bay and Vicinity map area, California, was generated from backscatter collected by California ... |
Info |
Backscatter B [Swath]--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Drakes Bay and Vicinity, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_Swath_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson ... |
Info |
Backscatter A [8101]--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Drakes Bay and Vicinity, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, ... |
Info |
Transgressive Contours--Bolinas to Pescadero, California
This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "TransgressiveContours_BolinasToPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from ... |
Info |
Sediment Thickness—Bolinas to Pescadero, California
This part of DS 781 presents data for the sediment-thickness map of the Bolinas to Pescadero, California, region. The raster data file is included in "SedimentThickness_BolinastoPescadero.zip," which is accessible from http://pubs.usgs.gov/ds/781/BolinastoPescadero/data_catalog_BolinastoPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ... |
Info |
Isopachs--Bolinas to Pescadero, California
This part of DS 781 presents data for the isopachs for the Bolinas to Pescadero, California, region. The vector data file is included in "Isopachs_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters between offshore Offshore Bolinas and offshore Pescadero ... |
Info |
Depth to Transition--Bolinas to Pescadero, California
This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "DepthToTransition_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ... |
Info |
Transgressive Contours--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ... |
Info |
Sediment Thickness--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ... |
Info |
Isopachs--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ... |
Info |
Faults--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, ... |
Info |
Depth to Transition--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ... |
Info |
Central California CoSMoS v3.1 projections of shoreline change due to 21st century sea-level rise
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Read metadata carefully. Details: Projections of shoreline position in the Central Coast of California are made for scenarios of 25, 50, 75, 92, 100 ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in San Diego County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in San Diego County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in San Diego County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in San Diego County
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in San Diego County
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in San Diego County
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in San Diego County
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in San Diego County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in San Diego County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in San Diego County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in San Diego County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in San Diego County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in San Diego County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in San Diego County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in San Diego County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in San Diego County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in San Diego County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in San Diego County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in San Diego County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
JI_Q10.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q09.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q08.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q07.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q06.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q05.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q04.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q03.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q02.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q01.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_250M_LCC_WGS84.TIF - Johnston Atoll U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The surveys during that time period, and conducted in succession from 6 December 1990 ... |
Info |
HW3_Q74.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q73.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q72.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q71.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q70.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q69.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q68.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q67.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q66.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q65.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q64.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q63.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q62.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q61.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q60.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q59.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q58.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q57.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q56.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q55.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q54.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q53.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_250M_LCC_WGS84.TIF - Hawaii III - Northwestern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW2_Q52.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q51.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q50.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q49.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q48.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q47.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q46.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q45.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q44.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q43.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q42.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q41.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q40.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q39.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q38.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q37.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q36.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q35.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q34.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q33.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q32.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q31.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q30.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q30A.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_250M_LCC_WGS84.TIF - Hawaii II - Central Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, as part of that program, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted nine cruises within the U.S. EEZ off Hawaii. The surveys during that time period focused on the central Hawaiian region. The results of these surveys were 24 ... |
Info |
HW1_Q29.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q28.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q27.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q26.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q25.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q24.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q23.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q22.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q21.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q20.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q19.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q18.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q17.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q16.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q15.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q14.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q13.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q12.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q11.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q10.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q09.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q08.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q07.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q06.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q05.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q04.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q03.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q02.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q01.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_250M_LCC_WGS84.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey a total of 29 mosaics of 50-meter resolution were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological ... |
Info |
GMX_Q16.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (16 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q15.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (15 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q14.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (14 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q13.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (13 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q12.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (12 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q11.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (11 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q10.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (10 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q09.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (9 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q08.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (8 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q07.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (7 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q06.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (6 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q05.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (5 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q04.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (4 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q03.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (3 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q02.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (2 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q01.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (1 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_250M_AEA_NAD27.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GAK_Q60.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q59.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q58.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q57.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q56.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q55.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q54.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q53.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q52.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q51.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q50.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q49.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q48.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q47.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q46.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q45.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q44.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q43.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q42.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q41.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q40.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q39.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q38.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q37.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q36.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q35.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q34.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q33.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q32.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q31.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_250M_LCC_WGS84.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
The Gulf of Alaska U.S. EEZ GLORIA digital sidescan-sonar mosaic covers about 806,000 square kilometers (sq km) of sea-floor. The mosaic shows the sea-floor morphology from Uminak Pass to Dixon Entrance, from the shelf break seaward to about 400 km. An additional 70-km-wide swath was imaged along the British Columbia margin to follow the trace of the Queen Charlotte Fault south of the Dixon Entrance. Major features visible on the mosaic include continental-margin deformation structures and submarine-channel ... |
Info |
EC_Q23.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (23 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q22.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (22 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q21.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (21 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q20.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (20 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q19.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (19 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q18.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (18 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q17.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (17 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q16.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (16 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q15.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (15 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q14.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (14 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q13.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (13 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q12.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (12 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q11.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (11 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q10.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (10 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q09.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (9 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q08.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (8 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q07.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (7 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q06.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (6 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q05.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (5 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q04.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (4 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q03.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (3 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q02.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (2 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q01.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (1 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_250M_AEA_NAD27.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
CYM_Q02.TIF - Cayman Trough GLORIA sidescan-sonar data mosaic (2 of 2) (Mercator, 50m, Clarke 1866)
From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough region. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce ... |
Info |
CYM_Q01.TIF - Cayman Trough GLORIA sidescan-sonar data mosaic (1 of 2) (Mercator, 50m, Clarke 1866)
From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough region. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce ... |
Info |
CYM_250M_MER_NAD27.TIF - Cayman Trough GLORIA sidescan-sonar composite mosaic (MER, 250 m, Clarke 1866)
From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous ... |
Info |
COW_Q36.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (36 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q35.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (35 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q34.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (34 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q33.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (33 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q32.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (32 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q31.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (31 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q30.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (30 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q29.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (29 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q28.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (28 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q27.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (27 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q26.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (26 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q25.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (25 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q24.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (24 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q23.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (23 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q22.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (22 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q21.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (21 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q20.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (20 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q19.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (19 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q18.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (18 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q17.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (17 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q16.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (16 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q15.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (15 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q14.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (14 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q13.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (13 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q12.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (12 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q11.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (11 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS Southern California v3.0 projections of shoreline change due to 21st century sea-level rise
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using CoSMoS-COAST, a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Details: Projections of shoreline position in Southern California are made for scenarios of 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 5.0 meters of sea-level rise by the year 2100. Four datasets are available for different ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 runup projections
Geographic extent of projected runup associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 coastal squeeze projections
Projected coastal squeeze derived from CoSMoS Phase 2 shoreline change and cliff retreat projections. Projected coastal squeeze extents illustrate the available area between shoreline (mean high water; MHW) positions and man-made structures and barriers (referred to as non-erodible structures) or cliff-top retreat, as applicable, for a range of sea-level rise scenarios. The coastal squeeze polygons include results from the Coastal Storm Modeling System (CoSMoS) shoreline change (CoSMoS-COAST; Vitousek and ... |
Info |
CoSMoS Southern California v3.0 Phase 2 projections of coastal cliff retreat due to 21st century sea-level rise
This dataset contains projections of coastal cliff-retreat rates and positions for future scenarios of sea-level rise (SLR). Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical and statistical models based on field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS) v.3.0 Phase 2 in Southern California. Details: Cliff ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
Nearshore waves in southern California: hindcast, and modeled historical and 21st-century projected time series
Abstract: This data release presents modeled time series of nearshore waves along the southern California coast, from Point Conception to the Mexican border, hindcasted for 1980-2010 and projected using global climate model forcing for 1975-2005 and 2012-2100. Details: As part of the Coastal Storm Modeling System (CoSMoS), time series of hindcast, historical, and 21st-century nearshore wave parameters (wave height, period, and direction) were simulated for the southern California coast from Point Conception ... |
Info |
Geochemical analysis of authigenic carbonates and chemosynthetic mussels at Atlantic Margin seeps (ver. 2.0, March 2019)
Isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus sp., was performed on samples collected from seep fields in the Baltimore and Norfolk Canyons on the north Atlantic margin. Samples were collected using remotely operated underwater vehicles (ROVs) during three different research cruises in 2012, 2013, and 2015. Analyses were performed by several different laboratories, and the results are presented in spreadsheet format. |
Info |
Repeat high-resolution acoustic-backscatter datasets collected between 2014 and 2016 of a field of crescent-shaped rippled scour depressions in northern Monterey Bay, California
Between November 2014 and June 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center (PCMSC) conducted eight repeat, high-resolution bathymetry and acoustic-backscatter surveys of a small patch of seafloor offshore Santa Cruz in northern Monterey Bay, California. PCMSC also collected oceanographic time-series data over the same two-year period. This metadata file describes the eight acoustic-backscatter datasets. |
Info |
Seafloor character of the Oregon outer continental shelf (OCS) proposed wind farm site
This seafloor-character raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The substrate classes mapped in this area have been numbered to indicate combinations of seafloor hardness and ruggedness. The map was created from multibeam echosounder (MBES) bathymetry and backscatter data collected in 2014 and processed in 2015 (Cochrane and others, 2016) and a video supervised classification method described by Cochrane (2008). |
Info |
Coastal and Marine Ecological Classifcation Standard (CMECS) geoforms of the Oregon outer continental shelf (OCS) proposed wind farm site
This polygon shapefile is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The polygons have attribute values for Coastal and Marine Ecological Classification Standard (CMECS) geoforms, substrate, and modifiers. CMECS is the U.S. government standard for marine habitat characterization and was developed by representatives from a consortium of federal agencies. The standard provides an ecologically relevant structure for biologic, geologic, chemical, and physical ... |
Info |
Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site
This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been numbered to indicate combinations of seafloor hardness, ruggedness and depth associated with biotopes derived by analysis of video data as described in the accompanying Open-File Report (Cochrane and others, 2017). The map was created using video and multibeam echosounder bathymetry and backscatter data collected in 2014 and processed in 2015 ... |
Info |
CMECS geoform, CMECS substrate, and surficial geology offshore of Point Estero
This part of USGS Data Series 781 presents substrate, geomorphic, and geologic attributed polygons in the Offshore of Point Estero, California, map area, one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data ... |
Info |
Acoustic-backscatter data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA
These metadata describe acoustic-backscatter data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The acoustic-backscatter data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates. |
Info |
Structure-from-Motion underwater photos from the Florida Keys, 2019
Underwater photos were collected using a new 5-camera system, the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). Images were collected in July 2019 by towing the SQUID-5 in 3 to 4 meters of water off of Islamorada in the Florida Keys. The five cameras were synchronized together and with a survey-grade Global Positioning System (GPS). Images were collected over diverse benthic settings, including living and senile reefs, rubble, and sand. The images are ... |
Info |
Overlapping lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021
Underwater images were collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The images are organized in zipped files grouped by survey line. The SQUID-5 system records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS date, time, and latitude and longitude of the GNSS antenna mounted on the towed surface vehicle, copyright, keywords, and ... |
Info |
CMECS substrate, geoform, and biotic component polygons derived from multibeam echosounder data and underwater video observations collected offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I, offshore alternative energy project
These metadata describe Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data Committee, 2012) attributed polygons derived from multibeam echosounder acoustic bathymetry and backscatter intensity data, and from underwater video collected offshore of Morro Bay, California from 2016 to 2020. The polygons have CMECS substrate, geoform and biotic component attributes. Most of the data were collected in support of the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management ... |
Info |
CMECS geoform, CMECS substrate, and surficial geology offshore of Morro Bay
This part of USGS Data Series 781 presents substrate, geomorphic, and geologic attributed polygons in the Offshore of Morro Bay, California, map area, one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data ... |
Info |
Point cloud data of Lake Tahoe near Dollar Point
Three-dimensional point clouds (LAZ format) were developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'high noise') derived from the confidence values. LAZ is an open format developed for the efficient use of point cloud lidar data. A description of the LAZ ... |
Info |
Orthoimagery of Lake Tahoe near Dollar Point
Lakebed orthoimagery was developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimages were developed using both image-mosaic and image-averaging methods, which were then output as 5-mm resolution rasters. In general, the "Mosaic" product is somewhat sharper in resolution but will include some distinct seam lines and noticeable differences in image quality across the image. The "Average" ... |
Info |
Bathymetric digital elevation model (DEM) of Lake Tahoe near Dollar Point
Underwater images collected near Dollar Point in Lake Tahoe, California, were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified 3D point cloud. The DEM was derived in Metashape (ver. 1.6.4) from the point cloud, but it excludes the 'high noise' class. The DEM data were output as a geoTIFF raster at 25-mm resolution. |
Info |
Nearshore parametric wave setup hindcast data (1979-2019) for the North and South Carolina coasts
This dataset presents alongshore wave setup timeseries for the North and South Carolina coastlines. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to cross-shore transects spaced at ... |
Info |
Nearshore parametric wave setup future projections (2020-2050) for the North and South Carolina coasts
This dataset presents alongshore wave setup timeseries for the North and South Carolina coastlines. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to cross-shore transects spaced at ... |
Info |
Nearshore water level, tide, and non-tidal residual hindcasts (1979-2016) for the North and South Carolina coasts
A dataset of modeled nearshore water levels (WLs) was developed for the North and South Carolina coastlines. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields -. Water level outputs were extracted from the global grid at approximately 20 km resolution along the coastlines. These data were then statistically downscaled using a signal-specific ... |
Info |
Nearshore water level, tide, and non-tidal residual future projections (2016-2050) for the North and South Carolina coasts
A dataset of modeled nearshore water levels (WLs) was developed for the North and South Carolina coastlines. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields. Water level outputs were extracted from the global grid at approximately 20 km resolution along the southeast Atlantic coastline. These data were then statistically downscaled using a ... |
Info |
Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for North Carolina and South Carolina
This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps). Projections were made using the Coastal Storm Modeling System - Coastal One-line ... |
Info |
Satellite-derived shorelines for North Carolina and South Carolina (1984-2021)
This dataset contains shoreline positions derived from available Landsat satellite imagery for North Carolina and South Carolina for the time period of 1984 to 2021. Positions were determined using CoastSat (Vos and others, 2019a and 2019b), an open-source mapping toolbox, was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. To understand shoreline evolution in complex environments and operate long-term simulations illustrating potential shoreline positions in the next ... |
Info |
Projections of coastal water depths for North Carolina and South Carolina
Projected water depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. As described by Nederhoff and others (2023), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the ... |
Info |
Projections of coastal flood hazards and flood potential for North Carolina and South Carolina
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2023), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the ... |
Info |
Projected water table depths along the North and South Carolina coasts
To predict water table depths, seamless groundwater heads for unconfined coastal North and South Carolina groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for ... |
Info |
Projected groundwater head along the North and South Carolina coasts
Seamless unconfined groundwater heads for U.S. coastal North and South Carolina groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea ... |
Info |
Projected groundwater emergence and shoaling along the North and South Carolina coasts
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. |
Info |
Nearshore parametric wave setup hindcast data (1979-2019) for the U.S. Atlantic coast
This dataset presents alongshore wave setup timeseries for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to ... |
Info |
Nearshore parametric wave setup future projections (2020-2050) for the U.S. Atlantic coast
This dataset presents alongshore wave setup timeseries for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to ... |
Info |
Nearshore water level, tide, and non-tidal residual hindcasts (1979-2016) for the U.S. Atlantic coast
A dataset of modeled nearshore water levels (WLs) was developed for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields -. Water level outputs were extracted from the global grid at approximately 20 km resolution along the coastlines. These data were then statistically ... |
Info |
Nearshore water level, tide, and non-tidal residual future projections (2016-2050) for the U.S. Atlantic coast
A dataset of modeled nearshore water levels (WLs) was developed for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields. Water level outputs were extracted from the global grid at approximately 20 km resolution along the Atlantic coastline. These data were then ... |
Info |
Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for the U.S. Atlantic Coast
This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps).Projections were made using the Coastal Storm Modeling System - Coastal One-line ... |
Info |
Satellite-derived shorelines for the U.S. Atlantic coast (1984-2021)
This dataset contains shoreline positions derived from available Landsat satellite imagery for five states (Delaware, Maryland, Viginia, Georgia, and Florida) along the U.S. Atlantic coast for the time period 1984 to 2021. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in KMZ format. Significant uncertainty is associated with the locations of shorelines in ... |
Info |
Projections of coastal flood depths for the U.S. Atlantic coast
Projected depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and Virginia). Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the U.S. Atlantic ... |
Info |
Projections of coastal flood hazards and flood potential for the U.S. Atlantic coast
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and southern Virginia). Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2023), projections were made using a system of numerical models driven by output ... |
Info |
Projected water table depths along the Virginia, Georgia, and Florida coasts
To predict water table depths, seamless groundwater heads for unconfined coastal Virginia, Georgia, and Florida (Atlantic and Gulf coast south of Sarasota) groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic ... |
Info |
Projected groundwater head along the Virginia, Georgia, and Florida coasts
Seamless unconfined groundwater heads for U.S. coastal Virginia, Georgia, and Florida (Atlantic and Gulf coast south of Sarasota) groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of ... |
Info |
Projected groundwater emergence and shoaling along the Virginia, Georgia, and Florida coasts
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. Similar modeled data for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314. |
Info |
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation
Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ... |
Info |
Transgressive Contours--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ... |
Info |
Sediment Thickness--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ... |
Info |
Isopachs--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ... |
Info |
Faults--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, ... |
Info |
Depth to Transition--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ... |
Info |
Transgressive contours--Santa Barbara Channel, California
This part of DS 781 presents data for the transgressive contours for the Santa Barbara Channel, California, region. The vector file is included in "TransgressiveContours_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial Maximum within California State Waters between Refugio Beach ... |
Info |
Sediment thickness--Santa Barbara Channel, California
This part of DS 781 presents data for the sediment-thickness map of the Santa Barbara Channel, California, region. The raster data file is included in "SedimentThickness_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness atop the bedrock at the Last Glacial Maximum horizon for the seafloor within the 3-nautical-mile limit of ... |
Info |
Isopachs--Santa Barbara Channel, California
This part of DS 781 presents data for the isopachs for the Santa Barbara Channel, California, region. The vector data file is included in "Isopachs_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters from the Offshore of Refugio Beach map area to the ... |
Info |
Depth to transition--Santa Barbara Channel, California
This part of DS 781 presents data for the depth-to-transition (the depth to the bedrock at the Last Glacial Maximum) map of the Santa Barbara Channel, California, region. The raster data file is included in "DepthToTransition_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial ... |
Info |
Bathymetry data collected from ASV operations on North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
True color and multispectral aerial imagery collected from UAS operations at North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
SandSnap grain-size analysis and photos from North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
True color and multispectral ortho products created from UAS operations at North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
High resolution structure from motion digital surface models representing three sites on North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
Backscatter A [8101]--Offshore of Fort Ross, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Habitat--Offshore of Ventura, California
This part of DS 781 presents habitat data in the Offshore of Ventura map area, California. The vector data file is included in "Habitat_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey ... |
Info |
Backscatter B [USGS]--Offshore of Ventura, California
This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C ... |
Info |
Backscatter A [CSUMB]--Offshore of Ventura, California
This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, ... |
Info |
Backscatter D [USGS]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterD_USGS_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Habitat--Offshore of Santa Barbara, California
This part of DS 781 presents data for the habitat map of the Offshore of Santa Barbara map area, California. The vector data file is included in "Habitat_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., ... |
Info |
Backscatter B [USGS]--Offshore of Santa Barbara, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Santa Barbara map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., ... |
Info |
Backscatter A [CSUMB]--Offshore of Santa Barbara, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Santa Barbara map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G. ... |
Info |
Habitat--Offshore of Refugio Beach, California
This part of DS 781 presents the habitat map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Habitat_RefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., Seitz, G.G., Endris, C.A., Sliter ... |
Info |
Habitat--Offshore of Fort Ross, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Fort Ross map area, California. The polygon shapefile is included in "Habitat_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ... |
Info |
Habitat--Offshore of Coal Oil Point, California
This part of DS 781 presents the habitat map of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Habitat_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, L.M., Greene, ... |
Info |
Backscatter C [Fugro]--Offshore of Coal Oil Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterC_Fugro_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ... |
Info |
Backscatter B [USGS]--Offshore of Coal Oil Point, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ... |
Info |
Backscatter A [CSUMB]--Offshore Coal Oil Point, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ... |
Info |
Habitat--Offshore of Carpinteria, California
This part of DS 781 presents habitat data in the Offshore of Carpinteria map area, California. The vector data file is included in "Habitat_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.D., Wong, F.L ... |
Info |
Backscatter B [USGS]--Offshore of Carpinteria, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Carpinteria map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, ... |
Info |
Backscatter A [CSUMB]--Offshore of Carpinteria, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Carpinteria map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz ... |
Info |
Habitat--Offshore of Tomales Point, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Tomales Point map area, California. The polygon shapefile is included in "Habitat_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., ... |
Info |
Backscatter C [Swath]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Backscatter B [7125]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Backscatter A [8101]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_ OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Backscatter--Offshore of Refugio Beach Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Refugio Beach map area, California. The raster data file is included in "Backscatter_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., ... |
Info |
Habitat--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Point Reyes map area, California. The vector data file is included in "Habitat_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ... |
Info |
BackscatterC [7125]--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterB_Swath_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ... |
Info |
BackscatterB [Swath]--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterB_Swath_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ... |
Info |
BackscatterA [8101]--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterA_8101_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ... |
Info |
CMECS geoform, substrate, and biotopes offshore of Tacoma, Washington
This part of USGS Data Series 935 (Cochrane, 2014) presents substrate, geomorphic, and biotope data in the Offshore of Tacoma, Washington, map area, a part of the Southern Salish Sea Habitat Map Series. Given the variable bathymetric resolution, the complex geologic history of the region, and the lack of acoustic backscatter data, automated and semi-automated classification schemes of classifying seafloor substrate and geoform were deemed to have very low accuracy. Instead, classification of these ... |
Info |
Habitat--Offshore Santa Cruz, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Santa Cruz map area, California. The vector data file is included in "Habitat_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier ... |
Info |
Habitat--Offshore of Aptos, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Aptos map area, California. The vector data file is included in "Habitat_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ... |
Info |
Habitat--Offshore of San Gregorio, California
This part of SIM 3306 presents data for the habitat map of the Offshore of San Gregorio map area, California. The vector data file is included in "Habitat_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey, M.D., Bretz, C ... |
Info |
Backscatter B [7125]--Offshore San Gregorio, California
This part of SIM 3306 presents data for the acoustic-backscatter map of the Offshore of San Gregorio map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterB_7125_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Backscatter A [8101]--Offshore San Gregorio, California
This part of SIM 3306 presents data for the acoustic-backscatter map of the Offshore of San Gregorio map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterA_8101_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Habitat--Offshore of San Francisco, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of San Francisco map area, California. The vector data file is included in "Habitat_SanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., Kvitek, R.G. ... |
Info |
Habitat--Offshore of Salt Point, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Salt Point map area, California. The vector data file is included in "Habitat_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
BackscatterC [7125]--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "Backscatter7125_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
BackscatterB [Swath]--Offshore of Salt Point map area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterSwath_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
BackscatterA [8210]--Offshore of Salt Point map area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "Backscatter8101_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Habitat--Offshore of Half Moon Bay, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Half Moon Bay map area, California. The polygon shapefile is included in "Habitat_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ... |
Info |
Backscatter B [7125]--Offshore Half Moon Bay, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Half Moon Bay map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterB_7125_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Backscatter A [8101]--Offshore Half Moon Bay, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Half Moon Bay map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterA_8101_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Backscatter C [Swath]--Offshore of Fort Ross, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Backscatter B [7125]--Offshore of Fort Ross, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Habitat--Offshore of Bolinas, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bolinas map area, California. The vector data file is included in "Habitat_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ... |
Info |
Habitat--Offshore of Pacifica, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Pacifica map area, California. The vector data file is included in "Habitat_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross ... |
Info |
BackscatterB [7125]--Offshore Pacifica, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids depending on mapping system. The raster data files are included in "Backscatter7125_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R ... |
Info |
BackscatterA [8101]--Offshore Pacifica, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids depending on mapping system. The raster data files are included in "BackscatterA_8101_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, ... |
Info |
Backscatter D [7125]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterD_7125_2008_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
Backscatter C [8101]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterC_8101_2008_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
Backscatter B [8101]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterB_8101_2007_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
Backscatter A [8101]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterA_8101_2004_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
Backscatter E [Swath]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterE_Swath_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter D [Snippets]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterD_Snippets_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter C [7125]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterC_7125_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter B [8101]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_8101_2007_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter A [8101]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_2004_OffshoreBolinas.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Northern California 3.2 projections of coastal cliff retreat due to 21st century sea-level
This dataset contains projections of coastal cliff retreat and associated uncertainty across Northern California for future scenarios of sea-level rise (SLR) to include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, and 500 centimeters (cm) of SLR by the year 2100 and cover coastline from the Golden Gate Bridge to the California-Oregon state border. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations ... |
Info |
CMECS geoform, substrate, and biotopes offshore of Seattle, Washington
This part of USGS Data Series 935 (Cochrane, 2014) presents substrate, geomorphic, and biotope data in the Offshore of Seattle, California, map area, a part of the Southern Salish Sea Habitat Map Series. Given the variable bathymetric resolution, the complex geologic history of the region, and the lack of acoustic backscatter data, automated and semi-automated classification schemes of classifying seafloor substrate and geoform were deemed to have very low accuracy. Instead, classification of these ... |
Info |
Tile index for Alaska coastal orthoimagery and elevation data: Icy Cape to Cape Prince of Wales, 2016
This part of the data release presents a shapefile that includes a spatial index of orthoimagery and elevation data describing the Alaskan coastline from Icy Cape to Cape Prince of Wales. The data products referenced in this index include orthoimagery, digital surface models, and elevation point clouds which were generated from aerial imagery using structure-from-motion methods. Fairbanks Fodar, a contracted mapping service, collected the aerial imagery in 2016 and created all of the data products ... |
Info |
Orthoimagery of the coast of Alaska from Icy Cape to Cape Prince of Wales, 2016
This part of the data release presents orthoimagery spanning the ocean shoreline of Alaska from Icy Cape to Cape Prince of Wales. Aerial images were collected, and data were processed, by Fairbanks Fodar (https://www.fairbanksfodar.com) in Fairbanks, Alaska, for the U.S. Geological Survey. The aerial images, from which the orthoimages were created, were collected in 2016 between August 29 and September 4 and extend from the shoreline to 400-4000 meters inland. The aerial images were collected with precise ... |
Info |
CMECS geoform, substrate, and biotopes offshore of Burien, Washington
This part of USGS Data Series 935 (Cochrane, 2014) presents substrate, geomorphic, and biotope data in the Offshore of Burien, Washington, map area, a part of the Southern Salish Sea Habitat Map Series. Given the variable bathymetric resolution, the complex geologic history of the region, and the lack of acoustic backscatter data, automated and semi-automated classification schemes of classifying seafloor substrate and geoform were deemed to have very low accuracy. Instead, classification of these ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2015 Offshore of Dauphin Island, Alabama
From September 16 through 23, 2015, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Dauphin Island, Alabama (AL). The Alabama Barrier Island Restoration Feasibility Study project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic ... |
Info |
Overlapping seabed images collected at Looe Key, Florida, 2021
A total of 94,567 underwater images were collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images in the Tagged Image File Format format to maintain the highest resolution and bit depth. Each image includes Exchangeable Image File (EXIF) metadata, containing Global ... |
Info |
Point cloud data of Looe Key, Florida, 2021
A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data. |
Info |
Orthoimagery of Looe Key, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 720x100 meters (0.072 square kilometers) in size. It was created using image-mosaicking methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution. |
Info |
GNSS locations of seabed images collected at Looe Key, Florida, 2021
The text file "SQUID5_LKR_2021_Image_Locations.txt" provides the GNSS antenna location for underwater images collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image EXIF headers due to decimal place limitations of the EXIF ... |
Info |
Digital elevation model (DEM) of Looe Key, Florida, 2021
A digital elevation model (DEM) was created from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 720x100 meters (0.072 ... |
Info |
Habitat--Offshore of Bodega Head, California
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bodega Head map area, California. The vector data file is included in "Habitat_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E. ... |
Info |
Backscatter C [Swath]--Offshore of Bodega Head, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Backscatter B [7125]--Offshore of Bodega Head, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell ... |
Info |
Backscatter A [8101]--Offshore of Bodega Head, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell ... |
Info |
Seafloor character from lidar data-Santa Barbara Channel
Seafloor character was derived from interpretations of lidar data available for the mainland coast within the study area from the California State Waters Mapping Program (Johnson and others, 2012; Johnson and others, 2013a; Johnson and others, 2013b; Johnson and others, 2013c). The number of substrate classes was reduced because rugosity could not be derived for all areas. References Cited: Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L ... |
Info |
Seafloor character from air-photo data-Santa Barbara Channel
Seafloor character was derived from interpretations of aerial photograph-derived kelp-distribution data available for Santa Cruz Island in the Santa Barbara Channel, California (Kushner and others 2013). The number of substrate classes was reduced because rugosity could not be derived for all areas. |
Info |
CMECS geoform, CMECS substrate, and surficial geology offshore of Point Buchon
This part of USGS Data Series 781 presents substrate, geomorphic, and geologic attributed polygons in the Offshore of Point Buchon, California, map area, one of 83 map areas of the California State Waters Map Series. The polygons are derived from multibeam echosounder (MBES) data and derivatives of that data using video-supervised and unsupervised classification. Attributes and attribute values are named following the Coastal and Marine Ecological Classification Standard (CMECS; Federal Geographic Data ... |
Info |
Orthoimagery of Eastern Dry Rocks coral reef, Florida, 2021
A seabed orthoimage was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (0.12 square kilometers) in size, and it was created using image-mosaicking methods and saved as a tiled, 5-mm resolution raster. |
Info |
SEG-Y format of boomer seismic-reflection profiles collected in the Pulley Ridge study area 2001
These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development. |
Info |
SEG-Y format of EdgeTech SB-512i and SB-424 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicProfiles)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
SEG-Y format of EdgeTech SB-512i, EdgeTech SB-424, and Knudsen 3200 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
SEG-Y format of EdgeTech SB-512i seismic-reflection profiles collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010.
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
SEG-Y format of chirp seismic data collected offshore of the Chandeleur Islands, LA, 2007
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
U.S. Geological Survey calculated percentage of time sediment is mobile for May 2010 to May 2011 at select points in the South Atlantic Bight (SAB_mobile_perc, point shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated recurrence interval of sediment mobility at select points in the South Atlantic Bight for May 2010 to May 2011 (SAB_mobile_freq, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated median of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_median, polygon shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_hIPR.shp, polygon shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
U.S. Geological Survey calculated 95th percentile of wave-current bottom shear stress for the South Atlantic Bight for May 2010 to May 2011 (SAB_95th_perc, polygon shapefile, Geographic, WGS84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Middle Atlantic Bight (MAB_mobile_perc.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Recurrence interval of sediment mobility at select points in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_mobile_freq_v1_1.SHP, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Median of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_median.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_hIPR.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
95th percentile of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_95th_perc.SHP)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are ... |
Info |
Percentage of time sediment is mobile for May 2010 to May 2011 at select points in the Gulf of Mexico (GMEX_mobile_perc, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
Recurrence interval of sediment mobility at select points in the Gulf of Mexico for May 2010 to May 2011 (GMEX_mobile_freq, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
The median of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_median, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
The half-interpercentile range of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_hIPR, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
The 95th percentile of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_95th_perc, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) ... |
Info |
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Gulf of Maine south into the Middle Atlantic Bight (GMAINE_mobile_perc.SHP, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
Recurrence interval of sediment mobility at select points in the Gulf of Maine south into the Middle Atlantic Bight for May, 2010 - May, 2011 (GMAINE_mobile_freq, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
The median of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_median.shp, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
The half interpercentile range of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_hIPR, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) ... |
Info |
SEG-Y Formatted Seismic-Reflection Profile Data Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Seismic-Reflection Profiles in SEG-Y Format From Southern Rhode Island Sound
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Seismic-Reflection Profiles in SEG-Y Format from Eastern Rhode Island Sound Collected in 1975
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Seismic-Reflection Profiles in SEG-Y Format From Western Rhode Island Sound (1980)
During 1980, a Uniboom seismic-reflection survey was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel NeechoThe cruise consisted fo 2 legs and had a total of 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise ... |
Info |
High-Resolution Seismic-Reflection Chirp Profiles in SEG-Y and JPEG Formats From Cruise RAFA08034 off Edgartown, Massachusetts (08034_KELPROFILES)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
High-Resolution Seismic-Reflection Boomer Profiles in SEG-Y and JPEG Formats From Cruise RAFA08034 off Edgartown, Massachusetts (08034_BOOMERPROFILES)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
High-Resolution Seismic-Reflection Profiles in SEG-Y and JPEG Formats From the Cruise RAFA07034 in the Vicinity of Woods Hole, Offshore Massachusetts
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Archive of Water Gun Subbottom Data Collected During USGS Cruise SEAX 95007 New York Bight, 7-25 May, 1995
This DVD-ROM contains copies of the navigation and field water gun subbottom data collected aboard the R/V Seaward Explorer, from 7-25 May, 1995. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise SEAX 95007 New York Bight, 7-25 May, 1995
This DVD-ROM contains copies of the navigation and field chirp subbottom data collected aboard the R/V Seaward Explorer, from 7-25 May, 1995. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise SEAX 96004 New York Bight, 1 May - 9 June, 1996
This DVD-ROM contains copies of the navigation and field chirp subbottom data collected aboard the R/V Seaward Explorer, from 1 May - 9 June, 1996. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information ... |
Info |
Archive of Boomer Subbottom Data Collected During USGS Cruise DIAN 96040, Fire Island, New York, 4-24 September 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise MGNM 00014, Central South Carolina, 13-30 March 2000
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS MGNM 00014 cruise. The coverage is the nearshore of central South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the ... |
Info |
Archive of Water Gun Subbottom Data Collected During USGS Cruise SEAX 96004, New York Bight, 1 May - 9 June, 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS SEAX 96004 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is UDF (Universal Disc Format--ISO 9660 equivalent) which can be read ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise DIAN 96040 Long Island, NY Inner Shelf -- Fire Island, NY, 4-24 September, 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 96040 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Boomer Subbottom Data Collected During USGS Cruise SEAX 96004, New York Bight, 1 May - 9 June, 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS SEAX 96004 cruise.The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ... |
Info |
Archive of Datasonics SIS-1000 Boomer and Sparker Subbottom Data Collected During USGS Cruise DIAN 97011 Long Island, NY Inner Shelf
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
USGS Seafloor Mapping DIAN 97032 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Boomer and Sparker Data Collected During USGS Cruise DIAN 97032 Long Island, NY Inner Shelf -- Fire Island, 24 September - 19 October, 1997
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS Diane G 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
USGS Seafloor Mapping ATSV 99044 Chirp Data off Myrtle Beach, South Carolina
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ATSV 99044 cruise. The coverage is the nearshore of the northern South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ... |
Info |
USGS Seafloor Mapping ALPH 98013 Water Gun Data offshore of the New York - New Jersey metropolitan area, collected in 1998
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ... |
Info |
USGS Seafloor Mapping CORLISS 98014 Seismic Data
This CD-ROM contains digital high resolution seismic-reflection and bathymetric data collected during the USGS CORLISS 98014 cruise during Aug. 25 to Sept. 15, 1998. The study area covers the Columbia River estuary, Willapa Bay, and the inner shelf off southern Washington. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format ... |
Info |
USGS Seafloor Mapping ALPH 98013 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed. |
Info |
usSEABED PaRSed data for the entire U.S. Gulf of Mexico and Caribbean (GMX_PRS, Puerto Rico and U.S. Virgin Islands)
This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the parsed (PRS) output of the dbSEABED mining software. It contains the results of parsing descriptions in the data resources. The PRS data is less precise because it comes from word-based descriptions, but will include information on outsized elements, consolidation that are not usually in EXT data. |
Info |
usSEABED facies data for the entire U.S. Gulf of Mexico and Caribbean (GMX_FAC, Puerto Rico and U.S. Virgin Islands)
The facies data layer (_FAC.txt) is a point coverage of known sediment samplings, inspections, and probings from the usSEABED data collection and integrated using the software system dbSEABED. The facies data layer (_FAC.txt)represents concatenated information about components (minerals and rock type), genesis (igneous, metamorphic, carbonate, terrigenous), and other appropriate groupings of information about the seafloor. The facies data are parsed from written descriptions from cores, grabs, photographs, ... |
Info |
usSEABED EXTracted data for the entire U.S. Gulf of Mexico and Caribbean (GMX_EXT, Puerto Rico and U.S. Virgin Islands)
This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the extracted (EXT) output of the dbSEABED mining software. It contains data items which were simply extracted from the data resources through data mining. The EXT data is usually based on instrumental analyses (probe or laboratory) but may apply to just a subsample of the sediment (eg. no large shells). |
Info |
usSEABED component and features data for the entire U.S. Gulf of Mexico and Caribbean (GMX_CMP, Puerto Rico and U.S. Virgin Islands)
This component data layer (_CMP.txt) file gives information about selected components (minerals, rock type, microfossils, benthic biota) and seafloor features (bioturbation, structure, ripples) at a given site. Values in the attribute fields represent the membership to that attribute's fuzzy set. For components such as minerals, rocks, micro-biota and plants, and/or epifauna and infauna, corals and other geologic and biologic information, the value depends on sentence structure and other components in ... |
Info |
usSEABED CaLCulated data for the entire U.S. Gulf of Mexico and Caribbean (GMX_CLC, Puerto Rico and U.S. Virgin Islands)
This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the calculated (CLC) output of the dbSEABED mining software. It contains results from calculating variables using empirical functions working on the results of extraction or parsing. The CLC data is the most derivative and certainly the least accurate; however, many clients appreciate that it extends the ... |
Info |
usSEABED PaRSed data for the entire U.S. Atlantic Coast (ATL_PRS)
This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the parsed (PRS) output of the dbSEABED mining software. It contains the results of parsing descriptions in the data resources. The PRS data is less precise because it comes from word-based descriptions, but will include information on outsized elements, consolidation that are not usually in EXT data. |
Info |
usSEABED facies data for the entire U.S. Atlantic Coast (ATL_FAC)
The facies data layer (_FAC.txt) is a point coverage of known sediment samplings, inspections, and probings from the usSEABED data collection and integrated using the software system dbSEABED. The facies data layer (_FAC.txt)represents concatenated information about components (minerals and rock type), genesis (igneous, metamorphic, carbonate, terrigenous), and other appropriate groupings of information about the seafloor. The facies data are parsed from written descriptions from cores, grabs, photographs, ... |
Info |
usSEABED EXTracted data for the entire U.S. Atlantic Coast (ATL_EXT)
This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the extracted (EXT) output of the dbSEABED mining software. It contains data items which were simply extracted from the data resources through data mining. The EXT data is usually based on instrumental analyses (probe or laboratory) but may apply to just a subsample of the sediment (eg. no large shells). |
Info |
usSEABED component and features data for the entire U.S. Atlantic Coast (ATL_CMP)
This component data layer (_CMP.txt) file gives information about selected components (minerals, rock type, microfossils, benthic biota) and seafloor features (bioturbation, structure, ripples) at a given site. Values in the attribute fields represent the membership to that attribute's fuzzy set. For components such as minerals, rocks, micro-biota and plants, and/or epifauna and infauna, corals and other geologic and biologic information, the value depends on sentence structure and other components in ... |
Info |
usSEABED CaLCulated data for the entire U.S. Atlantic Coast (ATL_CLC)
This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the calculated (CLC) output of the dbSEABED mining software. It contains results from calculating variables using empirical functions working on the results of extraction or parsing. The CLC data is the most derivative and certainly the least accurate; however, many clients appreciate that it extends the ... |
Info |
Archive of Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 01RCE02, Southern Louisiana, April and May 2001
This archive consists of two-dimensional marine seismic reflection profile data collected in the Mississippi River Delta, Atchafalaya River Delta, and Shell Island Pass in southern Louisiana. These data were acquired in April and May of 2001 aboard the R/V G. K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, shapefiles, and GIF and JPEG images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruises 94GFP01, 95GFP01, 96GFP01, 97GFP01, and 98GFP02 in Lakes Pontchartrain, Borgne, and Maurepas, Louisiana, 1994-1998
The U.S. Geological Survey, in cooperation with the University of New Orleans, the Lake Pontchartrain Basin Foundation, the National Oceanic and Atmospheric Administration, the Coalition to Restore Coastal Louisiana, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and the University of Georgia, conducted five geophysical surveys of Lakes Pontchartrain, Borgne, and Maurepas in Louisiana from 1994 to 1998. This report serves as an archive of unprocessed digital boomer seismic reflection ... |
Info |
Hydrodynamic time-series data from San Pablo Bay and Grizzly Bay , California, 2019
Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected in San Pablo Bay and Grizzly Bay from June to August 2019 at seven unique stations. Data files are grouped by area (shallows of San Pablo Bay, channel of San Pablo Bay, and shallows of Grizzly Bay). Each shallow site ... |
Info |
Distribution of particle size in suspension at various depths from San Pablo Bay and Grizzly Bay, California, 2019
These data present suspended particle size distributions collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected at one site in San Pablo Bay and one site in Grizzly Bay from June through August 2019, by deploying a Sequoia Scientific Laser In-situ Scattering and Transmissometry instrument (LISST 100x) from a small vessel near pre-established USGS instrument moorings. At both sites, data were collected on six ... |
Info |
Suspended sediment concentrations from water samples collected in San Pablo Bay and Grizzly Bay , California, 2019
Water samples were collected in San Pablo Bay and Grizzly Bay on five days from June through August 2019. The water samples were collected near pre-established USGS instrument moorings with a peristaltic pump or via a Niskin bottle, deployed off of a small vessel. Data are provided in a comma-delimited values spreadsheet. |
Info |
Hydrodynamic time-series data from San Pablo Bay and Grizzly Bay, California, 2020
Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected in San Pablo Bay and Grizzly Bay from January to June 2020 at seven locations. Data files are grouped by area (shallows of San Pablo Bay, channel of San Pablo Bay, and shallows of Grizzly Bay). Each shallow site contained a ... |
Info |
Distribution of particle size in suspension at various depths from San Pablo Bay and Grizzly Bay, California, 2020
These data present suspended particle size distributions collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center within two embayments of San Francisco Bay. Data were collected at one site in San Pablo Bay and one site in Grizzly Bay from January through February 2020 by deploying a Sequoia Scientific Laser In-situ Scattering and Transmissometry instrument (LISST 200x) from a small vessel near pre-established USGS instrument moorings. At both sites, data were collected on ... |
Info |
Suspended sediment concentrations from water samples collected in San Pablo Bay and Grizzly Bay, California, 2020
Water samples were collected in San Pablo Bay and Grizzly Bay on five days from January through June 2020. The water samples were collected from a small vessel near pre-established USGS instrument moorings using a peristaltic pump or a Niskin bottle. Data are provided in a comma-delimited values spreadsheet. |
Info |
Turbidity data from the Carmel River, central California, 2014 to 2017
This data provides river turbidity measurements collected on the Carmel River, CA. Turbidity was measured to study any changes in the Carmel River’s sediment loads following the removal of the San Clemente Dam. The USGS-run DTS-12 turbidity sensor was deployed above the Sleepy Hollow Weir on the Carmel River, CA (instrument was located at 36.445250 degrees North, 121.710494 degrees West). Deployment began on December 9, 2014. After June 16, 2016, the instrument was removed for calibration. A new ... |
Info |
Suspended sediment concentration (SSC) in the San Lorenzo River, Santa Cruz, California, USA, from 2008 to 2019
Suspended-sediment concentrations are reported in mg/L for water samples collected from the San Lorenzo River during the rainy seasons from 2008 to 2019. Samples were collected during 2-, 5- and 10-year flood events. |
Info |
Polycyclic aromatic hydrocarbons (PAHs) in the San Lorenzo River, Santa Cruz, California, USA, from 2015 to 2016
Polycyclic aromatic hydrocarbons (PAHs) are reported for water samples collected from the San Lorenzo River water during the rainy seasons from 2015 to 2016. Samples were collected during 2-, 5- and close to 10 year flood events. |
Info |
Total suspended solids and particle size distributions from grab samples collected during four 0.25-day profiling periods in south San Francisco Bay, California, summer 2020
Water samples were collected in south San Francisco Bay on four days in July 2020. The water samples were collected near pre-established USGS instrument moorings with a Niskin bottle, lowered from the R/V Snavely. Data are provided in comma-delimited values spreadsheets. |
Info |
Hydrodynamic timeseries data from south San Francisco Bay, California, summer 2020
Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, suspended particle size, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at two locations in south San Francisco Bay. Data were collected in the channel (one platform) and in the shallows (three co-located platforms) for 2 weeks in July 2020. Data files are grouped by site (channel or shallows). Each site contained instrumentation to ... |
Info |
Profiles of salinity, temperature, depth, turbidity, and distributions of particle size in suspension collected during four 0.25-day periods in south San Francisco Bay, California, summer 2020
Profiles of salinity, temperature, turbidity, and particle size distribution were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at two locations in south San Francisco Bay. Data were collected at depth intervals ranging between 0.5 and 2 m (depending on total water depth); sensors remained at each depth for 1 minute. Each profile was collected from surface to bed, and the near-surface region was sampled again at the end of the profile to check steady-state ... |
Info |
Water quality in the Elwha River estuary, Washington, from 2006 to 2014.
This portion of the data release presents water column dissolved nutrient concentration data and water quality parameters from samples collected in the Elwha River estuary, Washington, in 2006, 2007, 2013, and 2014 (USGS Field Activities L-15-13-PS, L-24-13-PS, T-R5-13-PS, T-R6-13-PS, T-RA-14-PS, 2014-614-FA, 2014-628-FA, 2014-633-FA, 2014-666-FA). Water column samples were collected by hand in acid-washed opaque bottles from multiple locations. Water quality was measured using a handheld Hydolab Data Sonde ... |
Info |
Hydrodynamic time-series data from Whale's Tail South marsh in Eden Landing Ecological Reserve in Alameda County, CA in 2021 and 2022
Hydrodynamic and sediment transport time-series data, including water depth, velocity, turbidity, conductivity, and temperature, were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center in South San Francisco Bay and in the Whale's Tail South marsh in Eden Landing Ecological Reserve in Alameda County, CA in 2021 and 2022. Data files are grouped by data type and season (summer and winter). At Bay sites, instruments were deployed on small quadpods. In the tidal creek, ... |
Info |
Percent Carbon content from suspended sediment in water samples collected Whale's Tail South marsh tidal creeks in South San Francisco Bay, California, Winter 2021-2022
Water samples were collected in Whale's Tail South marsh tidal creeks on December 3 and 6, 2021 and January 3, 2022 and processed to determine percent carbon in the samples. The water samples were collected near pre-established USGS instrument moorings with a Niskin bottle. |
Info |
Suspended sediment concentrations from water samples collected in South San Francisco Bay, California, and adjacent tidal creeks, Winter 2021-2022
Water samples were collected in South San Francisco Bay and Whale's Tail South marsh tidal creeks from November 2021 through February 2022. The water samples were collected near pre-established USGS instrument moorings with a peristaltic pump, via a Niskin bottle, or directly with a sample bottle to analyze for suspended sediment concentration. |
Info |
Suspended sediment concentrations from water samples collected in South San Francisco Bay, California, and adjacent tidal creeks, Summer 2021
Water samples were collected in South San Francisco Bay and Whale's Tail South marsh tidal creeks from June 2021 through September 2021. The water samples were collected near pre-established USGS instrument moorings with a peristaltic pump, via a Niskin bottle, or directly with a sample bottle to analyze for suspended sediment concentration. |
Info |
Percent sand and fines in suspended sediment from water samples from South San Francisco Bay, California, 2021
Water samples were collected in South San Francisco Bay adjacent to Whale’s Tail South marsh on three days from June through December 2021 to analyze for suspended-sediment concentration and the percent of sand and fines in suspended sediment. |
Info |
Profiles of salinity, temperature, depth, turbidity, and distributions of particle size in suspension collected during four days in South San Francisco Bay, California, June 2021 to January 2022
Profiles of salinity, temperature, turbidity, and particle size distribution were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center in South San Francisco Bay. Data were collected at depth intervals ranging between 0.5 and 2 m (depending on total water depth); sensors remained at each depth for 1-2 minutes. Each profile was collected from surface to bed, and the near-surface region was sampled again at the end of the profile to check steady-state conditions. Profiles ... |
Info |
Suspended-sediment concentrations from water samples collected in Bellingham Bay, Washington, USA, 2019 to 2021
Water samples were collected in Bellingham Bay, Washington, USA on 14 days from July 30, 2019, to April 15, 2021. The water samples were collected from a small vessel near pre-established USGS instrument moorings using a van Dorn water sampler. These data were collected to support studies of sediment delivery, transport, deposition, and resuspension in this Pacific Northwest estuarine embayment. |
Info |
Conductivity, temperature and salinity time-series data collected in 2009 in the vicinity of Wainwright, Alaska
Measurements of conductivity and temperature were collected with a high-accuracy conductivity and temperature recorder (Seabird SBE37 microcat) in approximately 10 m water depth at a single location fronting the village of Wainwright, Alaska, from 24 August to 1 October 2009. The instrument was mounted on the frame approximately 0.50 m off the bottom of the seafloor. Salinity was calculated from conductivity measurements. |
Info |
Conductivity, temperature, depth, salinity, dissolved oxygen, nitrogen, and fluorescence data collected in 2009 in the vicinity of Wainwright, Alaska
Measurements of conductivity, temperature, and depth (CTD), in addition to dissolved oxygen, nitrogen, and fluorescence, were collected in the Wainwright Inlet, the mouth of the Kuk River, and in the nearshore region off Wainwright, Alaska, in August 2009 with a Seabird SBE 19. Post-survey calculations of salinity were made from the conductivity measurements. |
Info |
Pharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017
Passive membrane samplers—semipermeable membrane devices and polar organic chemical integrative samplers—were deployed for 22 continuous days at 7 sites along the West Maui, Hawai'i, coastline in February and March 2017 to assess organic contaminants at shallow coral reef ecosystems from diverse upstream inputs. |
Info |
Grain-size data for sediment samples collected in Whiskeytown Lake, northern California, in 2018 and 2019
This data release includes grain-size data from sediment samples collected in submerged and subaerial regions in Whiskeytown Lake and around the reservoir margin. Sediment samples were collected using a sampler deployed from a boat or by hand from locations exposed above the water surface. Sediment grain size was analyzed at the USGS laboratory in Santa Cruz, Calif. The full data set is reported here, but users should be aware that due to instrument error the data between approximately grain sizes from 0 ... |
Info |
Photographs of vibracores collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This section of the data release contains photographs of 34 vibracores that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. Continuous line-scan photographs were created in the lab to assess sand and gravel resources in Federal and State waters for potential use in future beach nourishment projects along stretches of the coast where critical erosion hotspots have been identified. |
Info |
Core logger data from vibracores collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This section of the data release contains core logger tabular data of 34 vibracores that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. The cores were analyzed for gamma ray density and magnetic susceptibility. The logging was performed at 1-cm intervals from the top of each core section. In addition to the core logger data, the locations of the cores are available as either a comma-delimited file or a shapefile. |
Info |
Sediment grain-size data from vibracore samples collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This section of the data release contains grain-size and total organic carbon (TOC) analyses of 132 samples taken from vibracores that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. The samples were analyzed for percent weight of grain size and total organic carbon. The samples were taken at approx. 50 cm intervals from (and including) the core-catcher, which represents the bottom of the core. |
Info |
Rain measurements in Santa Cruz County, California, January 2023
Rain gages were deployed temporarily at four sites in Santa Cruz County, California, during a series of atmospheric-river storms that delivered unusually large amounts of rain in January 2023. Data collection focused on the San Lorenzo River, and include three locations in the San Lorenzo Valley (in Boulder Creek along Hilton Drive, in Felton near Glengarry Road, and in Scotts Valley along Green Valley Road), as well as one site within the city of Santa Cruz, on Darwin Street. These data are provided to ... |
Info |
Sediment grain size data from vibracore samples collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-22 to 2018-05-26
This section of the data release contains grain-size and total organic carbon (TOC) analyses of 174 samples taken from vibracores that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey Field Activity 2018-638-FA offshore Oceanside to San Diego, southern California. The samples were analyzed for percent weight of grain size and total organic carbon. The samples were taken at approx. 50 cm intervals from (and including) the core-catcher, which represents the bottom of the core. |
Info |
Photographs of vibracores collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-22 to 2018-05-26
This section of the data release contains photographs of 41 vibracores that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey Field Activity 2018-638-FA offshore Oceanside to San Diego, southern California. |
Info |
Core logger data from vibracores collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-22 to 2018-05-26
This section of the data release contains core logger tabular data of 41 vibracores that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey Field Activity 2018-638-FA offshore Oceanside to San Diego, southern California. The cores were analyzed for sound velocity (P-wave) and gamma ray density. The logging was performed at 1-cm intervals from the top of each core section. In addition to the core logger data, the location of the cores are available as either a comma-delimited file ... |
Info |
PR_Q09.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q08.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q07.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q06.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q05.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q04.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q03.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q02.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q01.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. The study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough ... |
Info |
PR_250M_AEA_NAD27.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)
From 4 November to 3 December 1985 the U.S. Geological Survey (USGS) conducted a single cruise to map the entire sea-floor of the Exclusive Economic Zone (EEZ) of Puerto Rico and the U.S. Virgin Islands. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 9 digital mosaics ... |
Info |
KP_Q07.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q06.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q05.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q04.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q03.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q02.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q01.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_250M_LCC_WGS84.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
JI_Q16.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q15.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q14.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q13.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q12.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q11.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: average conditions in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 20-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 1-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 100-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
Central California CoSMoS v3.1 projections of coastal cliff retreat due to 21st century sea-level rise
This dataset contains spatial projections of coastal cliff retreat (and associated uncertainty) for future scenarios of sea-level rise (SLR) in Central California. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS). Read metadata and references ... |
Info |
Projected water table depths for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected groundwater head for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected groundwater emergence and shoaling for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to ... |
Info |
Offshore baseline generated to calculate shoreline change rates near Barter Island, Alaska
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the shorelines near Barter Island, Alaska for the time period 1947 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates. |
Info |
Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020
This dataset includes one vector shapefile delineating the position of the shorelines at Barter Island, Alaska spanning seven decades, between the years 1947 and 2020. Shoreline positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the shoreline through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System ... |
Info |
Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020
This dataset consists of rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each bluff line establishing measurement points, which are then used to ... |
Info |
Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate bluff-change rates. |
Info |
Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the ... |
Info |
Orthophotomosaic images (natural color) of the north coast of Barter Island, Alaska acquired on July 05 2015 (GeoTIFF image; 8-cm resolution)
Aerial photographs were collected from a small, fixed-wing aircraft over the coast of Barter Island, Alaska on July 05 2015. Precise aircraft position information and structure-from-motion photogrammetric methods were combined to a derive high-resolution orthophotomosaic. This orthophotomosaic contain 3-band, 8-bit, unsigned raster data (red/green/blue; file format-GeoTIFF) with a ground sample distance (GSD) resolution of 8 cm. The file employs Lempel-Ziv-Welch (LZW) compression. This orthophotomosaic was ... |
Info |
Orthophotomosaic image (natural color) of the north coast of Barter Island, Alaska acquired on September 07 2014 (GeoTIFF image; 11-cm resolution)
Aerial photographs were collected from a small, fixed-wing aircraft over the coast of Barter Island, Alaska on September 07 2014. Precise aircraft position information and structure-from-motion photogrammetric methods were combined to derive a high-resolution orthophotomosaic. This orthophotomosaic contain 3-band, 8-bit, unsigned raster data (red/green/blue; file format-GeoTIFF) with a ground sample distance (GSD) resolution of 11 cm. The file employs Lempel-Ziv-Welch (LZW) compression. This ... |
Info |
Orthophotomosaic image (natural color) of the north coast of Barter Island, Alaska acquired on July 01 2014 (GeoTIFF image, 19-cm resolution)
Aerial photographs were collected from a small, fixed-wing aircraft over the coast of Barter Island, Alaska on July 01 2014, September 07 2014. Precise aircraft position information and structure-from-motion photogrammetric methods were combined to derive a high-resolution orthophotomosaic. This orthophotomosaic contain 3-band, 8-bit, unsigned raster data (red/green/blue; file format-GeoTIFF) with a ground sample distance (GSD) resolution of 19 cm. The file employs Lempel-Ziv-Welch (LZW) compression. This ... |
Info |
Elevation point clouds of the north coast of Barter Island, Alaska acquired July 01 2014, September 07 2014, and July 05 2015 (LAZ file)
Six elevation point cloud files in LAZ format (compressed LAS binary data) are included in this data release: 3 raw point clouds of unclassified and unedited points and 3 modified point clouds that were spatially shifted and edited to remove outliers and spurious elevation values associated with moving water surfaces. An XYZ coordinate shift was applied to each data set in order to register the data sets to an earth-based datum established from surveyed ground control points. Points are unclassified and ... |
Info |
Surveyed ground control and elevation checkpoints acquired at Barter Island, Alaska, 2014-2016
Ground control points and checkpoints were collected during Global Positioning System (GPS) surveys conducted between September 6, 2014 and September 18, 2016 along the northern coast of Barter Island, Alaska. Data were acquired and post-processed using precise positioning and used to co-register and assess accuracy of photogrammetric data sets. |
Info |
Shoreline change data along the coast of California from 2015 to 2016
This dataset contains shoreline change measurements for sandy beaches along the coast of California over the 2015/2016 El Nino winter season. Mean high water (MHW) shorelines were extracted from Light Detection and Ranging (LiDAR) digital elevation models from the fall of 2015 and the spring of 2016 using the ArcGIS smoothed contour method. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. ... |
Info |
Mean high water (MHW) shorelines along the coast of California used to calculated shoreline change from 1998 to 2016
This dataset contains mean high water (MHW) shorelines for sandy beaches along the coast of California for the years 1998/2002, 2015, and 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method. The smoothed contour line was then quality ... |
Info |
Shoreline change rates along the coast of California from 1998 to 2016
This dataset contains California shoreline change rates derived from mean high water (MHW) shorelines from 1998 (in Central and Southern California) and 2002 (in Northern California) to 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method ... |
Info |
Historical shoreline vectors for barrier islands and spits along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019
A suite of morphological metrics were derived from existing shoreline and elevation datasets for barrier islands and spits located along the north-slope coast of Alaska between Cape Beaufort and the U.S.-Canadian border. This dataset includes shoreline vectors, including data source and acquisition date, from five time periods: 1950s, 1980s, 2000s, 2010s, and 2020s. The shoreline vectors were combined to produce polygons upon which the metrics were calculated. |
Info |
Polygon shapefiles attributed with morphometric information for barrier islands and spits located along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019
A suite of morphological metrics were derived from existing shoreline and elevation datasets for barrier islands and spits located along the north-slope coast of Alaska between Cape Beaufort and the U.S.-Canadian border. This dataset includes barrier polygons attributed with morphological metrics from five time periods: 1950s, 1980s, 2000s, 2010s, and 2020s. |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
Archive of Boomer Seismic Reflection Data Collected During USGS Cruises 00SCC02 and 00SCC04, Barataria Basin, Louisiana, May 12 - 31 and June 17 - July 2, 2000
This archive consists of two-dimensional marine seismic reflection profile data collected in the Barataria Basin of southern Louisiana. These data were acquired in May, June, and July of 2000 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, ASCII, HTML, PDF, RTF, shapefiles, and GIF and JPEG images. Binary data are in SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web ... |
Info |
Archive of Boomer Seismic Reflection Data Collected During USGS Cruises 01SCC01 and 01SCC02, Timbalier Bay and Offshore East Timbalier Island, Louisiana, June - August 2001
This archive consists of two-dimensional marine seismic reflection profile data collected in Timbalier Bay and in the Gulf of Mexico offshore East Timbalier Island, Louisiana. These data were acquired June 30 - July 9 (01SCC01) and August 1 - 18 (01SCC02), 2001, aboard the R/V G.K. Gilbert and a University of New Orleans 21-foot Proline. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable ... |
Info |
Archive of Chirp Seismic Reflection Data Collected During USGS Cruises 01SCC01 and 01SCC02, Timbalier Bay and Offshore East Timbalier Island, Louisiana, June 30 - July 9 and August 1 - 12, 2001
This archive consists of two-dimensional marine seismic reflection profile data collected in Timbalier Bay and in the Gulf of Mexico offshore East Timbalier Island, Louisiana. These data were acquired in June, July, and August of 2001 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format (GIF ... |
Info |
Archive of Boomer Seismic Reflection Data Collected During USGS Cruise 96CCT01, Nearshore South Central South Carolina Coast, June 26 - July 1, 1996
This archive consists of marine seismic reflection profile data collected in four survey areas from southeast of Charleston Harbor to the mouth of the North Edisto River of South Carolina. These data were acquired June 26 - July 1, 1996, aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format ... |
Info |
Archive of Chirp Seismic Reflection Data Collected During USGS Cruises 00SCC02 and 00SCC04, Barataria Basin, Louisiana, May 12-31 and June 17 - July 2, 2000
This archive consists of two-dimensional marine seismic reflection profile data collected in the Barataria Basin of southern Louisiana. These data were acquired in May, June, and July of 2000 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper-Text Markup Language (HTML), shapefiles, and Graphics Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) images. Binary data are in Society of ... |
Info |
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 97KEY01, Upper and Middle Florida Keys, 12 October - 1 November, 1997.
This report consists of two-dimensional marine seismic reflection profile data from the upper and middle Florida Keys. The area of operations extended from just north of Molasses Reef off north Key Largo (Upper Keys) to the east boundary of Looe Key National Marine Sanctuary (Lower Keys). These data were acquired in October and November of 1997 with the Charter Vessel Captain's Lady. The data are available in a variety of formats, including binary, ASCII, HTML, Shapefiles, JPG and GIF images. Binary data ... |
Info |
Boomer Seismic Reflection Profiles and Shotpoint Navigation Collected on USGS Field Activities 01ASR01, 01ASR02, 02ASR01, and 02ASR02,Miami, Florida, November and December, 2001, and January and February, 2002.
This appendix consists of two-dimensional marine seismic reflection profile data from Miami, Florida, canals. These data were acquired in November and December of 2001 and in January and February of 2002 using a 4.9 m (16 ft) jonboat. The data are available in a variety of formats, including ASCII,HTML, and GIF images. Reference maps and GIF images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b101fl/html/b-1-01-fl ... |
Info |
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99LCA01, Crescent Beach Spring, Florida, 26 April - 27 April, 1999.
This report consists of two-dimensional marine seismic reflection profile data from Crescent Beach Spring, Florida. These data were acquired in April of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Trackline maps and GIF images of the profiles may be viewed with your WWW browser. For ... |
Info |
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99SCE01, Little River Inlet to the entrance of Winyah Bay, South Carolina, 8 June - 16 June, 1999.
This report consists of two-dimensional marine seismic reflection profile data from South Carolina. These data were acquired in June of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geologists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your Web browser. For more information on ... |
Info |
Archive of Boomer Seismic Reflection Data, collected on USGS Cruise 99ASR01, Lake Okeechobee, Florida, 29 June - 30 June, 1999.
This report consists of two-dimensional marine seismic reflection profile data from Lake Okeechobee, Fla., that were acquired in June of 1999 aboard the R/V G. K. Gilbert. These data are available in a variety of formats, including binary, ASCII and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g399fl/html/g-3-99-fl.meta.html ... |
Info |
Archive of digital chirp subbottom profile data collected during USGS cruise 14BIM05 offshore of Breton Island, Louisiana, August 2014
In August of 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service (USFWS), conducted a geophysical survey offshore of Breton Island, Louisiana to investigate the geologic controls on barrier island framework and long-term sediment transport. Additional details related to this activity can be found by searching the USGS's Coastal and Marine Geoscience Data System (CMGDS), for field activity 2014-317-FA (also known as 14BIM05). This report serves as an archive of ... |
Info |
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruises 01RCE05 and 02RCE01 in the Lower Atchafalaya River, Mississippi River Delta, and Offshore Southeastern Louisiana, October 23-30, 2001, and August 18-19, 2002
In October of 2001 and August of 2002, the U.S. Geological Survey conducted geophysical surveys of the Lower Atchafalaya River, the Mississippi River Delta, Barataria Bay, and the Gulf of Mexico south of East Timbalier Island, Louisiana. This report serves as an archive of unprocessed digital marine seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF image of each seismic profile is provided. The ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruises 94CCT01 and 95CCT01, Eastern Texas and Western Louisiana, 1994 and 1995
In June of 1994 and August and September of 1995, the U.S. Geological Survey, in cooperation with the University of Texas Bureau of Economic Geology, conducted geophysical surveys of the Sabine and Calcasieu Lake areas and the Gulf of Mexico offshore eastern Texas and western Louisiana. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13CCT04 Offshore of Petit Bois Island, Mississippi, August 2013
In August of 2013, the U.S. Geological Survey conducted a geophysical survey offshore of Petit Bois Island, Mississippi to investigate the geologic controls on barrier island framework and long-term sediment transport. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are provided. The archived trace data are in standard Society of Exploration Geophysicists ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 12BIM03 Offshore of the Chandeleur Islands, Louisiana, July 2012
In July of 2012, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, La. to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013
From March 16 - 31, 2013, the U.S. Geological Survey conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, Idaho; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also ... |
Info |
Archive of Digital Boomer Subbottom Data Collected During USGS Cruises 99FGS01 and 99FGS02 Offshore Southeast and Southwest Florida, July and November, 1999
During July 19 - 26 and November 17 - 18 of 1999, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the Atlantic Ocean offshore of Florida's southeast coast from Orchid to Jupiter, FL and the Gulf of Mexico offshore of Venice, FL. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Filtered and gained digital images of the seismic ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 11BIM01 Offshore of the Chandeleur Islands, Louisiana, June 2011
In June of 2011, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, LA to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 10BIM04 Offshore Cat Island, Mississippi, September 2010
In September of 2010, the U.S. Geological Survey conducted a geophysical survey offshore of Cat Island, Miss., to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society ... |
Info |
Archive of Digital Boomer Subbottom Profile Data Collected in the Atlantic Ocean Offshore Northeast Florida During USGS Cruises 03FGS01 and 03FGS02 in September and October of 2003
In September and October of 2003, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey, conducted geophysical surveys of the Atlantic Ocean offshore northeast Florida from St. Augustine, Florida, to the Florida-Georgia border. This report serves as an archive of unprocessed digital boomer subbottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected Offshore Northeast Florida during USGS Cruise 02FGS01 in October 2002
In October of 2002, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore Nassau and Duval Counties in northeast Florida, from the northern tip of Amelia Island to Jacksonville Beach. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained digital ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected Offshore East-Central Florida during USGS Cruises 96FGS01 and 97FGS01 in November of 1996 and May of 1997
In November of 1996 and May of 1997, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the shallow geologic framework of the continental shelf offshore east-central Florida from Cape Canaveral to Sebastian Inlet. This report serves as an archive of unprocessed digital boomer seismic reflection data, navigation files, trackline maps, GIS files, FACS logs, and FGDC metadata. Filtered and gained digital images of the seismic profiles ... |
Info |
Archive of Digital Boomer Subbottom Data Collected During USGS Cruise 05FGS01, Offshore East-Central Florida, July 17-29, 2005
In July of 2005, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore of Florida's east coast from Flagler Beach to Daytona Beach. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 08CCT01, Mississippi Gulf Islands, July 2008
In July of 2008, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 10CCT01, 10CCT02, and 10CCT03, Mississippi and Alabama Gulf Islands, March and April 2010
In March and April of 2010 the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted geophysical surveys to investigate the geologic controls on island framework from just east of Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009
In June and July of 2009, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study of Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal ... |
Info |
Archive of Digital Boomer Sub-bottom Data Collected During USGS Field Activities 97LCA01, 97LCA02, and 97LCA03, West-Central and East Coast Florida |